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This mixed-method study investigates the quality of teachers’ 

implementation of mathematical tasks and the nature of changes 

that occurred during an academic year with the support of a 

professional development program. Task implementation quality 
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Introduction 

Approaches to mathematics teaching have undergone changes in the last three decades. The 

defining characteristics of the changes include a sustained emphasis on conceptual understanding, 

reasoning, and problem solving as opposed to conventional teaching, characterized by the presentation 

of facts and procedures, followed by practice using these procedures, all without a focus on underlying 

mathematical concepts (Stein, Correnti, Moore, Russell, & Kelly, 2017).  

Enabling teachers to adapt to changes and to implement new ideas in their teaching is a major 

challenge that Cohen (1990) characterizes as a “paradox where teachers are the chief agents of change 

as well as being a major part of the problem to be corrected” (p. 326). Indeed, most studies in this area 

indicate that teachers are unable to adapt to curricular changes (Davis, 2003). Teachers often choose 

tasks that are dependent on procedural skills or memorized knowledge and even when they choose 

tasks with the potential to develop reasoning, problem solving skills, and conceptual understanding, 

they often turn such tasks into routine mathematical exercises that rely on procedural skills (Tekkumru 

Kısa & Stein, 2015). With changes in curricular expectations, research on teaching mathematics, 

particularly on teacher implementation of mathematical tasks, is on the rise (Tekkumru Kısa & Stein, 

2015; Ubuz & Sarpkaya, 2014).  

Professional development (PD) programs can play a crucial role in supporting teachers’ 

learning, particularly in terms of their ability to implement classroom tasks in a way that leads to 

achieving the desired outcomes (Borko, 2004). Using a situative approach, Adler (2000) describes PD 

and teacher learning as “an increased participation in the practice of teaching” (p. 37) and becoming 

more knowledgeable about the profession. Borko (2004) discusses how teacher–researcher collaboration 

in a PD program can have an impact on teacher learning. Various studies indicate that teacher learning 

through such programs can be documented (Borko, 2004; Fennema et al., 1996), especially in terms of 

their instructional practices.  

In 2005, major changes in the Turkish primary mathematics curriculum such as those described 

above were implemented (Ersoy, 2006). At the time of the preparation of this article, a new primary 

mathematics curriculum was gradually being phased in one year at a time. It is similar to the 2005 

curriculum in scope and teaching/learning approaches. Mathematical tasks (often referred to as 

“activities” in Turkish textbooks) feature prominently in primary mathematics classrooms (Milli Eğitim 

Bakanlığı Talim ve Terbiye Kurulu Başkanlığı [MEB-TTKB], 2017). In mathematics education, the term 

“task” differentiates targeted mathematical work from all other sorts of classroom activities. Stein, 

Smith, Henningsen, and Silver (2000) define a mathematical task as “a segment of classroom activity 

devoted to the development of a mathematical idea” (p. 8). In line with this definition, a mathematical 

problem, a question about a mathematical idea or a collection of them can be turned into a mathematical 

task depending on how the teacher wishes to use it in the classroom.  

Considering the emphasis on using mathematical tasks to achieve the mathematical objectives 

and goals listed in the curriculum, studying the use of mathematical tasks in classrooms is essential. In 

Turkey, the textbooks published by the Ministry of National Education (MEB) offer numerous 

mathematical tasks. Teachers are given the freedom to choose their tasks so long as they are in line with 

the objectives of the curriculum. They can use the textbook tasks as they are (or amend them), find tasks 

from other resources, or create their own.  
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The present study investigates the quality of teachers’ implementation of mathematical tasks 

and the nature of changes that occurred over the course of an academic year with the support of a PD 

program. Quality of teachers’ implementation of tasks is defined through three features: demanding 

higher level thinking from the students from the beginning to the end of the task; attending to students’ 

thinking and building task implementation on their ideas and thinking; and establishing mathematical 

thinking as the ultimate criteria for evaluating credibility of mathematical ideas (Stein & Kaufman, 

2010). The first feature of quality of implementation of tasks concerns the key idea of cognitive demand, 

which can briefly be defined as the kind and level of thinking required from students to successfully 

work on a task (Stein et al., 2000).  

An investigation of whether a dense PD program requiring time and effort, brings about change 

in quality of teachers’ implementation of mathematical tasks in a context of curricular changes is the 

major significance of the study. Potentially such a study also allows researchers to make sense of how 

particular aspects and mechanisms of the PD program contributes to the changes taking place. Hence, 

while not the focus of this study, the concluding discussion will include considerations of the PD 

program with an eye on changes in quality of teachers’ implementation of mathematical tasks.    

Implementation of Mathematical Tasks 

To analyze mathematical tasks in terms of cognitive processes, Stein, Grover, and Henningsen 

(1996) divide mathematical tasks into two broad categories based on cognitive demand level: low-level 

and high-level demand tasks. Each category is divided into two sub-categories. Lower-level demand 

tasks are classified as either memorization tasks or procedures without connection to mathematical 

concepts tasks. Higher-level demand tasks are classified as either procedures with connection to 

mathematical concept tasks or doing mathematics tasks.  Stein et al. (2000) provide a detailed 

explanation of these task categories in their “Task Analysis Guide.” 

Stein et al. (2000) also developed a Mathematical Task Framework (MTF) for delineating the 

implementation of mathematical tasks, composed of four phases: the task as it appears in curricular 

materials, the task as it is set up in the classroom, the task as it is enacted in the classroom, and student 

learning. In the first three phases, tasks and the way they are implemented can be examined by 

identifying the cognitive processes required by the tasks. The MTF can be used to evaluate teaching 

practice by examining the level of cognitive demand in each phase. 

Stein and Kaufman (2010) maintain that, in order to establish environments where students 

engage in high-level thinking and reasoning, various issues need to be addressed. With this in mind, 

they devised a framework that presents these issues in three dimensions. First, the task itself needs to 

have a high level of cognitive demand, which has to be maintained at the set-up of the task and in its 

enactment in the classroom; that is, teachers should not allow the cognitive demand level of tasks to 

decline as they progress through the stages towards student learning. Teachers also need to attend to 

students’ thinking as they work on the tasks, which is the focus of the second dimension. This dimension 

embodies uncovering student thinking, deciding on which student ideas are to be heard by all students 

and connecting these ideas in a meaningful way. The third dimension is intellectual authority in the 

classroom, and it is built on what the teacher and students turn to for judgments of correctness of 

mathematical ideas.  Rather than expecting the teacher to act as the judge, mathematical reasoning and 

norms must be emphasized as the mathematical authority (See Appendix 1 for description of high 

quality implementation of tasks). 

Teachers’ use of tasks in classrooms has been studied in various ways. Some research has 

focused only on changes in cognitive demand (e.g. Charalambous, 2010). Others view teaching in a 

broader sense and focus on the use of tasks from this broader perspective. For example, researchers 
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from the University of Pittsburgh developed an Instructional Quality Assessment tool for evaluating 

the quality of instruction using these criteria: “(1) cognitively challenging instructional tasks, (2) task 

implementation, or opportunities for students to engage in high-level thinking and reasoning 

throughout an instructional episode, (3) opportunities for students to explain their mathematical 

thinking and reasoning in mathematical discussions or in written responses, and (4) teachers’ 

expectations for students’ learning” (Boston, 2012, p. 79). Similarly, Hill et al. (2008) frame the quality 

of mathematics instruction in 6 dimensions: mathematical errors, responding to students 

inappropriately, connecting classroom practice to mathematics, richness of mathematics, responding to 

students appropriately, and mathematical language. They constructed this framework by focusing on 

“deficits and affordances” (p. 437). In the present study, Stein and Kaufman’s (2010) quality of 

implementation of task framework was used so as to stay connected to teaching while implementing 

mathematics tasks, rather than including more generic elements of teaching practice such as classroom 

environment or classroom questioning. 

In the related literature there are various studies on factors that influence the selection of tasks 

and their implementation and the maintenance of the cognitive demand of tasks. These are teacher 

factors, including teacher knowledge (e.g. Charalambous, 2010; Wilhelm, 2014), teacher skills (e.g. 

Tekkumru Kısa & Stein, 2015), and teacher conceptions (e.g. Wilhelm, 2014) and contextual factors, which 

include the curriculum (e.g. Stein & Kaufman, 2010), time-related issues (e.g. Henningsen & Stein, 1997), 

and student characteristics (e.g. Henningsen & Stein, 1997). Considering that teaching is a rich amalgam 

of personal and social contexts, and given the interplay between all these factors, one can imagine the 

challenge of effecting change in teaching practices with the aim of adapting to curriculum changes.  

Teacher Professional Development 

Changes in teaching practice have long been regarded as a consequence of training (Clarke & 

Hollingsworth, 2002). Only recently have such changes been accepted as a dynamic process that is a 

consequence of teachers’ critical reflection on their own practice. Rimbey (2013) identified the key 

features of PD programs as establishing consistency among the learning approaches of the curriculum, 

targeted teacher learning and educational goals of participating schools; allowing sufficient time for 

learning to take place; and taking into consideration the social aspects of learning. 

Numerous studies in the PD literature criticize the expectation that teachers will adopt new 

knowledge and change as a result of knowledge transmission in PD programs (Guskey, 2002; 

Huberman & Miles, 1984). PD models based on short periods of dense transmission of knowledge 

assume that the PD programs will bring about changes in teachers’ beliefs and that these changes will 

be reflected in their practice. Guskey (2002), pointing to the inadequacy of this approach, suggests that 

PD programs should provide opportunities for teachers to think about and apply new techniques in 

their teaching practice, to reflect on the outcomes, and to iterate new ideas that they eventually 

incorporate into their practice. Guskey’s model is effective in highlighting the key dilemma of the 

transmission of knowledge approach in PD programs and in shedding light on methodological aspects 

of their design.  

In considering these key theoretical features in planning a PD program, it is also important to 

make decisions about methodology that will fulfill the requirements of the content area and fit the 

educational context in which the PD program will take place. Changes in the Turkish mathematics 

curriculum taking place since 2005, meant that teachers needed help in implementing mathematical 

tasks with a focus on the objectives of the curriculum. Such a program also needed to be based in schools 

that were willing to adopt changes in teaching approach.  
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Issues in the day-to-day implementation of PD programs include contextualizing discussions 

within teachers’ practice in their own classrooms (Borko, Jacobs, Eiteljorg, & Pittman, 2008) and using 

video recordings (Van Es & Sherin, 2008; Tekkumru Kısa & Stein, 2015) to maximize the effectiveness 

of the PD program. Discussion between teachers and between teachers and facilitators has been shown 

to provide fruitful opportunities for reflection and learning (Anderson, Coltman, Page, & Whitebread, 

2005; Perry & VandeKamp, 2000; Van Es & Sherin, 2008). Ball and Cohen (1999) indicate critical features 

of professional development approaches: (a) an inquiry-oriented learning environment, (b) a collective 

endeavor to learning, and (c) discussion based on concrete artifacts from the classroom. PD programs 

supporting teacher change need to incorporate these key features. 

In light of the teaching needs that have arisen with the changes in the mathematics curriculum 

in Turkey and the trends in developing effective teacher PD programs, this study poses two research 

questions:  

• Is there a significant difference in teachers’ implementation of tasks from the beginning to the 

end of a 1-year PD program? 

• How does task implementation change during a 1-year PD program? 

While the first research question requires quantification of data from observations, the second 

requires content analysis of data from the same observations plus subsequent interviews with teachers. 

Results provided as findings for the second research question is expected to significantly contribute to 

making sense of the changes taking place and point towards potential avenues for further research. 

Method 

This is a mixed-method study comprising both qualitative and quantitative elements. It is a 

concurrent triangulation design in that qualitative and quantitative data were collected concurrently 

and the results of the analysis of both sets of data were combined to study convergence and potential 

differences (Creswell, 2009). The study took place in the context of a PD program, which provided rich 

quantifiable data for this research as well as observations and interviews conducted simultaneously for 

qualitative analysis.  

Participants 

The PD program took place in a small private primary school in Istanbul in the 2014-2015 

academic year. The school did not have a strict catchment area and, due to its fees, drew students from 

middle to high socio-economic status (SES) families. Class sizes ranged from 13 to 18. Even though 

majority of students attend public schools in Turkey, the school carried common characteristics of many 

private schools in the country. 

Four teachers participated in the study. They were enthusiastic about participating in the 

program and declared a particular interest in improving their implementation of mathematical tasks. 

All participants were female with training in elementary education, but none had a specialization in 

mathematics or mathematics education. Their teaching experience ranged between 7 and 36 years. 

Nesrin and Nil, each with more than 30 years of professional experience, were both teaching first grade. 

Defne, who had 8 years of experience, and Suzi, with 7, were teaching second and third grades, 

respectively. All names are pseudonyms. 

Professional Development Program 

The PD program was designed on the principle of learning in practice (Ball & Cohen, 1999) and 

on the principle of building change in practice through the implementation of new ideas (Guskey, 2002). 

These principles had two practical manifestations: the use of video recordings of the teachers’ classes 
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(Borko et al., 2008) and the creation of a community of learners where ideas are discussed by teachers 

and the facilitators of the program (Van Es & Sherin, 2008).  

The four teachers, the author (as the main researcher), and an assistant researcher responsible 

for the recordings were involved in the program. The program focused on improving the quality of 

teachers’ implementation of mathematical tasks in their classes. We started with four workshops the 

week before the onset of the school year. These covered the key concepts of quality of implementation 

of mathematical tasks. All observations and discussions in the interviews centered on the selection and 

planning of tasks and on the aspects of teaching that relate to the implementation of tasks.  

The PD program provided numerous opportunities for teachers to reflect on their practice, 

with repeated planning-teaching-reflecting cycles. Videos of either the teachers’ own classes or other 

classes served as contextually relevant tools for reflection (Borko et al., 2008). They also allowed 

teachers to relive their experience, thereby supporting reflection (Van Es & Sherin, 2008). Throughout 

the program, teachers made various comments about noticing elements of their teaching practice that 

they did not pay attention to before, intentions to change aspects of their practice and the fact that 

thinking about their practice and discussing it with others motivated them to reconsider some of the 

assumptions they had about implementing mathematical tasks. These were manifestations of the 

opportunities provided by the program. 

The duration of the program was approximately nine months (mid-September 2014 – mid-June 

2015). Observations were done biweekly, and interviews with teachers were held weekly − one with the 

third grade teacher, one with the second grade teacher and one with the two first grade teachers. The 

whole group of teachers met at the end of each semester. The number of lessons and the number of tasks 

observed each semester are shown in Table 1. 

Table 1. Number of Lessons and Tasks Observed 

Teacher 
Fall Spring Total 

Lessons Tasks Lessons Tasks Lessons Tasks 

Defne 8 21 5 13 13 34 

Suzi 6 11 6 12 12 23 

Nesrin 7 21 7 15 14 36 

Nil 8 18 6 13 14 31 

Data Collection Tools and Instruments 

The Classroom Observation Coding Instrument: Audio and video recordings were used to collect 

data from class observations. For the quantitative part of the study, the researcher chunked the 

lessons into tasks, and each task implemented in the classroom was coded for the quality of its 

implementation, using a revised version of Stein and Kaufman’s (2010) Classroom Observation 

Coding Instrument (see Appendix 1), the only revision being a further subdivision of one of the 

codes for intellectual authority. The indicators for the codes for each variable are predetermined in 

the instrument, and the observers coded each task according to the indicator that best described the 

task implementation. The coding scheme has five variables:  

• the cognitive demand of the task as it appears in published materials (values from 1 to 5),  

• the cognitive demand of the task as it is set up by the teacher (values from 1 to 5), 

• the cognitive demand of the task as it is enacted by the teacher and students (values from  

1 to 5),   

• attention to student thinking (values from 0 to 3), and 

• intellectual authority (values from 0 to 3).  
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A total cognitive demand score − ranging from 2 to 8, was calculated according to the codes 

of the three phases of task implementation (first three variables on the list), with higher values 

indicating maintenance of high cognitive demand through the phases. Scores for attention to student 

thinking and intellectual authority were obtained directly by using the scoring indicators in the 

instrument (see Appendix 1 for a detailed account of indicators of the variables and calculation of 

the scores).  

Before starting the formal data analysis, the author and the assistant researcher 

independently coded the implementation of 27 tasks observed in 12 lessons in order to check inter -

rater reliability. The agreement between raters’ codes for total cognitive demand, attention to student 

thinking, and intellectual authority were 74%, 93% and 85%, respectively, with corresponding 

Cohen’s κ values of 0.62 (weighted κ: 0.72), 0.88 and 0.73. Percent agreement and Cohen’s κ values 

showed good agreement between raters and were taken as evidence of reliability.  

Interviews (Meetings with Teachers): In addition to class observations, semi-structured 

interviews were conducted with individual teachers and groups through the year. These lasted 40 

minutes each. The main agenda items were: 

• topics for the coming week’s lessons: This involved discussion of the conceptual and 

procedural content for lesson plans and ideas for tasks. The researcher facilitated the 

interviews to maintain the focus on curriculum content and the variables in the task 

implementation framework. Rather than imposing ideas on the teachers, the researcher acted 

as “a critical peer”.  

• the previous lesson’s observation:  Videos of the lessons were shared with the teachers to be 

viewed on the weekend. As they watched the videos, they were to focus on the 

implementation of task variables, changes in cognitive demand level, and the effectiveness of 

the task implementation.  

At the end of each semester, an interview that included all four participating teachers was held. 

Issues that had arisen in the implementation of tasks and the interviews were discussed with the whole 

group. These larger interviews created opportunities for sharing experiences and opinions. 

The researcher did not use a fixed set of questions in these interviews. The discussions centered 

on the variables of the study — dimensions of mathematical task implementation and teachers’ 

comments about their practice. All interviews were audio recorded.    

Data Analysis 

Data were taken from the recordings of lessons observed and interviews. Data from the interviews 

were transcribed, as were data from the lessons, which were, chunked into tasks and coded for the 

quantitative analysis. Nvivo was used for analysis.  

For the quantitative analysis, descriptive statistical indicators of task implementation quality were 

obtained. For each lesson, scores were calculated by weighting the scores from the tasks in the lesson 

according to the amount of time each task lasted within the lesson. Hence, lessons constituted the unit of 

analysis since there were equal number of lessons observed per teacher yet the codes for the tasks were 

the underpinning elements. A profile for each teacher was obtained by cross-tabulating the scores from 

their lessons by the time they spent in the PD program. Variance in teacher performance accounted for by 

the time spent in the PD program was also calculated, using time as a proxy for the influence of the PD 

program. Finally, three repeated measures ANOVA tests were conducted to test the effect of the program 

on the quality of task implementation, with successive time slots for observations as the independent 

variable and the three indicators of task implementation quality as dependent variables.  



Education and Science 2020, Vol 45, No 203, 1-25 E. Ader 

 

8 

Lesson observation data were scored on the three dimensions of task implementation quality. The 

findings of the qualitative analysis were used to triangulate the findings of the quantitative analysis, in 

order to document teachers’ implementation of tasks and the changes that occurred during the PD 

program. Data from teacher interviews were open coded in order to capture the emerging themes in terms 

of task implementation quality and change in practice. 

Peer debriefing and multiple methods to collect data (triangulation) were used to establish the 

trustworthiness of the researcher’s interpretations in the qualitative analysis (Gay, Mills, & Airasian, 

2009). In addition, a thorough conceptualization of the phenomenon under study was presented in order 

to document how the data analysis accurately focused on the phenomenon. 

Results 

Findings from the Statistical Analysis 

To describe the task implementation quality, mean values were calculated for all scores for each 

semester (Table 2). Mean values for each teacher were calculated by weighting the codes for each task 

according to the time that particular task lasted relative to time on task. Weighted averages were used 

so as to better represent the values of task implementation at a typical moment in the lesson. 

Table 2. Mean Values of the Scores for Task Implementation Quality 

 Suzi Defne Nesrin Nil 

 Fall Spring Fall Spring Fall Spring Fall Spring 

Intellectual authority 

(out of 3) 
1,71 1,95 1,38 1,46 0,69 0,82 0,37 0,50 

Attention to students’ 

thinking (out of 3) 
1,27 1,40 1,78 1,98 0,91 1,21 0,52 1,03 

Total cognitive 

demand (2-8) 
5,98 7,28 5,54 6,66 3,72 7,03 2,33 5,38 

Scatter plots to illustrate the teachers’ progress were constructed for the dimensions of task 

implementation quality: total cognitive demand (Fig. 1), attention to student thinking (Fig. 2) and 

intellectual authority (Fig. 3). Figure 1 depicts a tendency for scores in the second semester to gather 

higher up in the top right quadrant compared to the left half of the plot, indicating a relationship between 

total cognitive demand and time spent in the PD program. However in Figures 2 and 3, the points 

corresponding to separate observations of the teachers are scattered across the plot, indicating much 

weaker relationships between time spent in the PD program and the variables, attending to student 

thinking and intellectual authority.  
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Figure 1. Total cognitive demand with respect to time 

 
Figure 2. Attention to student thinking with respect to time 
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Figure 3. Intellectual authority with respect to time 
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To further investigate individual teacher progress throughout the PD program, the relationship 

between the scores on the dimensions of task implementation and time spent in the PD program were 

analyzed (Table 4). Similar to the results for the whole group, most of the significant links were found 

between total cognitive demand scores and time spent in the PD program. Three of the four teachers’ 

total cognitive demand scores were significantly related to time: for Nesrin r = .78, p (one-tailed) < .01, 

for Nil r = .74, p (one-tailed) < .01 and for Defne r = .78, p (one-tailed) < .05. The only other significant 

link was between Nil’s attention to student thinking and time in the PD program, r = .53, p (one-tailed) 

< .01. However, these Pearson values should be interpreted with care since the numbers of data points 

are below 25 and the normal approximations are getting poorer with fewer data points (Weaver & 

Koopman, 2014). 

Table 4. Dimensions of Task Implementation Quality and Time Spent in the PD Program. 

Teacher N 
Pearson correlation coefficients 

Total Cognitive Demand Attention to Student Thinking Intellectual Authority 

Defne 13 .52* .37 .22 

Suzi 12 .47 .22 .24 

Nesrin 14 .78** .26 .13 

Nil 14 .74** .53* .13 

Note. N = number of observed lessons; * p < .05, one-tailed; ** p < .01, one-tailed. 

Analysis of Progression of Teaching with Illustrative Episodes 

Teachers having prominent changes in task implementation quality: An analysis of the qualitative 

data on teachers’ practice throughout the PD program provided evidence that corroborated the results 

of the statistical analysis. Similarities were observed between the practices of the two first-grade teachers 

in terms of changes throughout the year. At the beginning, in both Nesrin’s and Nil’s lessons, the total 

cognitive demand was relatively low (see Figure 1).  The tasks they implemented in their classes were 

planned and maintained at a low level of cognitive demand, focusing mainly on reproducing previously 

learned facts and rules. These lessons were predominantly on learning numbers and counting. Both 

teachers cited the curriculum objectives of that time of the year targeting counting skills and knowledge 

of numbers as the main reasons for using low cognitive demand tasks.  

The second observation of Nil’s class illustrates her task implementation in the early phases of 

the PD program. The lesson was on the number five, representing five as a quantity, counting up to five, 

and finding number pairs that combine to make five. Nil asked the students to hold up fingers on one 

hand and then gave the instructions. The students were to answer as a whole class by indicating their 

answers with their fingers. During this task, Nil asked short-answer questions to focus students on pairs 

of numbers that combine to make five and using skills on counting up to five, e.g. hiding one finger of 

her hand and asking “how many fingers will look for this hidden finger?”, hiding two fingers of her 

hand and asking “how many fingers will look for those two hidden fingers? Let’s count them”. Even 

though these ideas can be considered a preparation for addition and subtraction operations, no 

conceptual link was made between the task and these mathematical concepts. The task consisted of 

reciting the counting and subitizing knowledge to which students had already been introduced. 

Attention to student thinking and intellectual authority were also at a low level, since inviting student 

responses generated very short answers, and the teacher often confirmed students’ answers without 

making links to reasoning.    
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Towards the end of the school year, both Nesrin and Nil’s task implementation showed higher 

levels of total cognitive demand. They often encouraged the students to make connections with 

mathematical concepts. Nil was the only teacher who showed significant changes throughout the year 

in more than one dimension of task implementation: total cognitive demand and attention to students’ 

thinking, as illustrated by an excerpt from one of her lessons during the last month of the PD program.  

In a lesson on formulating problems that would use mathematical operations the students had 

learned, Nil showed a picture of several kinds of animals with a different number of each and asked her 

students to take inspiration from the picture to create word problems. She planned to spend the entire 

lesson on this task. The excerpt below illustrates her interaction with the students as she set up the task. 

Nil: What do we need to have in a problem? For example, if I said: There were two horses. 

Two more horses joined them. Would this be a problem? 

Students: (shouting in chorus) No!  

Nil: Why not? 

Dilek: Because there is no unknown number in this. 

Nil: (repeating) There is no unknown number. So, you’re saying that there should be 

something unknown. Correct. We should be looking for something unknown. Something 

we can find a solution for. 

Esra: Something we can solve…but it should be a bit difficult. 

Ece: The other day we solved a difficult problem…it should be difficult like that. 

Nil: Yes…from now on, we can focus on difficult problems. OK…now, here’s what I want 

you to do. In our problem, we can use addition, subtraction or we can use them together. 

And it can be a bit difficult. You can come up with problems to make us think about 

those things we learned. 

In setting up the task, Nil reminded the students about operations and the relevant terms they 

had learned, and she made connections with key ideas involved in the operations. She did not suggest 

a particular path for the students to follow. This was a doing mathematics task which had no specific 

procedure for leading the learners to a product. Throughout the implementation, Nil maintained the 

cognitive demand by giving students time to come up with problems and by sharing some of the 

student-generated problems with the whole group.  

Nil encouraged student input from the earliest phase of the task by asking them what they 

needed to pay attention to when formulating problems and gave them opportunities to share their ideas. 

She asked some of them to share the problems they had come up with, paying attention to whether their 

problems involved more than one mathematical operation. Although Nil made no explicit connection 

between problems and their mathematical underpinnings, her teaching moves manifested high levels 

of attention to student thinking that had not been apparent earlier in the PD program.  

Nesrin’s teaching displayed a sharp increase in total cognitive demand like Nil’s task 

implementation, but not an increase in attention to student thinking or intellectual authority. At the end 

of the year, her attention to student thinking was essentially at a level where she would give students 

opportunities to share their responses and make explanations, but she generally did not make 

connections between student ideas and the purposeful selection of specific responses. She did most of 

the justifications herself rather than referring the students to mathematical reasoning.  
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A lesson on solving problems that involved addition and subtraction operations exemplifies the 

dynamics of Nesrin’s task implementation at the end of the PD program. She gave her first graders a 

word problem about two children going shopping, each with the same amount of money and each 

making a variety of purchases. Students had to answer questions about how much money had been 

spent and who had spent more. Starting from the set-up of the task, Nesrin asked her students to think 

about what needed to be found, the approach to be adopted, and the reasoning behind their answers. 

She emphasized that she wanted the students to focus on the meaning underlying the operations and 

that she expected them to give justifications for their steps. This emphasis on the conceptual 

underpinning of steps demonstrated a key shift in her maintenance of cognitive demand, as opposed to 

implementing tasks with lower levels of cognitive demand. Nesrin created opportunities for her 

students to share their ideas about solution methods. The following exchange is excerpted from about 

the midpoint of the implementation. 

Nesrin: How do I find how much money he has left? How did you do that?   

Pınar: First, I added those two and found 13. Then I took away 13 from 20 and found 7.  

Nesrin: This is also correct. This is another strategy. You?  

Murat: I counted. 

Nesrin: You counted as well as doing operations. (pointing to another student) How did you do 

that? 

Kerem: First, I subtracted 9 from 20. Then I subtracted the 4. 

Nesrin: What?  

Kerem: (looking confused) Then…  

Nesrin: You should explain it just the same way you did it. I think you didn’t explain exactly like 

you did it.  

Kerem: First, I added 4 and 9. 

Nesrin: Why did you add them up? What did you find by adding? 

Kerem: How much he spent… 

Nesrin: Good. Then? 

Kerem: Then I subtracted that number from 20. 

Nesrin: How did you solve it? Why did you subtract instead of add?  

Kerem: How much was left. 

Nesrin: OK, but why did you subtract? What happened to the money that made you prefer 

subtraction?  

In a short period of time, three different strategies were verbalized by three students. Nesrin 

listened to the explanation of their strategies, and she helped them express their ideas in a way the 

whole group could understand. She affirmed the correctness of the response. However, she did not 

encourage the class to make connections among these ideas or leverage conversations that would make 

conceptual connections between mathematical ideas. She often acted as an evaluator of student 

responses with respect to their mathematical validity. Throughout the lesson, there were few 

occurrences of reasoning as a whole group for evaluation of ideas. As a result, the quality of her 

implementation of this task was not high in terms of attention to student thinking and intellectual 

authority.  

Overall, the major shift in task implementation occurred in the dimension of maintaining the 

cognitive demand and, in the interviews that followed, the two first-grade teachers occasionally touched 

on this change by referring to changes in their decisions about how they implemented tasks. Nesrin, for 
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instance, made the following comment about one of her tasks in the last month of the PD program: 

“Doing the task this way meant I had to give students a lot of time to work on the task themselves, but 

it’s necessary to expose students to high level cognitive processes. We’ve been talking about this 

throughout the year while watching our lesson videos together” (Interview, May 6, 2015). Similarly, Nil 

highlighted the emphasis she put on students’ making sense of mathematics problems, internalizing the 

mathematical meanings of operations, and using these concepts to analyze problems. Even though she 

had elements of these in her teaching practices, she claimed that she adopted a more systematic 

approach through sustained efforts in the PD program (Interview, June 3, 2015).  

A fluctuating progression through the program – cases of Suzi and Defne: Compared to Nesrin and 

Nil, Suzi and Defne had higher task implementation scores on all three dimensions from the onset of 

the PD program. As they progressed through the program, there were fluctuations in the quality of their 

task implementation. No significant changes occurred in attention to student thinking or intellectual 

authority.  

Even though Suzi had the highest average scores on total cognitive demand in both semesters, 

no significant change was observed on that dimension throughout the program. From the very 

beginning of the program, fluctuations in the level of cognitive demand were evident in the tasks she 

planned. A particular issue early in the program was that she chose tasks with high cognitive demand 

but failed to maintain the cognitive demand level in implementing them. For instance, in her first 

observed lesson, she told a story and handed out cards, each of which had a multiple of 6 written on. 

The cards were in no particular order. She explained there was a relationship between the numbers and 

gave students approximately five minutes to figure out the relationship. Her goal was to get the students 

to notice that the numbers were multiples of 6.  

Suzi set up the task in an open-ended fashion, without prescribing a particular route or 

procedure for the solution. She gave students time and opportunities to explore the relationship and 

come up with an answer. However, visiting groups as they worked on the task, she focused their 

discussions on the answer and directed the students towards the answer, as illustrated in the interaction 

below:  

Emir: Miss, we found it, increasing by 6.  

Suzi: Okay, you say 6 by 6? (pointing to a part of their work) But there is a mistake here. (She 

moved to another group. A student made an explanation that was not clearly audible in 

the video) OK, should we sort them in ascending order? If they can be sorted in 

descending order, then they can also be sorted in ascending order, right?  

Even though she avoided telling the students what the answer should be, she did not encourage 

conceptual analysis of the pattern or suggest how it could be verified or falsified. It turned into a low 

cognitive demand task where students were simply reciting the multiples of 6 or ordering the numbers 

from the smallest to the greatest. Suzi worked through the task, asking students to explain their answers, 

but the answers were not sequenced nor were they discussed in a coherent way in the class. She visited 

the groups, evaluated their answers, either affirming them or pointing to areas where students needed 

to do further work. Her lowering of the cognitive demand was related to her preference for evaluating 

the students’ work, which kept the intellectual authority at a low level.  
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However, there were also lessons where Suzi managed to maintain a high level of cognitive 

demand during the implementation of tasks. For example, in a lesson on symmetry in the spring 

semester, after a brief review of what students already knew about symmetry, she introduced a task 

where each student got a sheet of paper on which she had dripped ink, and she asked them to fold the 

paper. When the paper was unfolded, an amorphous symmetrical figure would appear. Students then 

examined the figures to see whether they were symmetrical and to explain their thoughts. During the 

discussion, various students described their strategies to check symmetry. Suzi also encouraged the 

students to think about the generalizability of the claims made in the class. Towards the end of the task, 

the discussion centered on the paper with the shapes shown in Figure 4 and another piece of paper. The 

following conversation then took place: 

Suzi:           Have a think about this. I’ll ask the question why. Is there symmetry here, or not? Ali? 

Ali: It’s not symmetrical because when you fold it here (pointing to a vertical fold in the 

middle of each shape on Figure 4), you get different shapes.  

Suzi: Can you explain that once again? Let me see if I’ve understood you correctly. 

Ali: (drawing a vertical line with his finger) Here, in the middle. Look, you get different 

shapes.  

Suzi: OK, suppose we think about this line (referring to the vertical fold on the paper). 

Consider this and think again. You are talking about one of the two shapes on this paper. 

What if we consider both shapes? 

Ali: In that case, they are symmetrical.  

Suzi: How’s that? 

Ali: Because when we fold it, both of them are exactly symmetrical.  

Suzi: OK, thank you. Does it matter if they match when you fold the paper? Oh, now I’m a bit 

confused. Our conversation is all over the place. Anyone want to comment? Is this 

symmetrical, or not? Elif? 

Elif: It’s symmetrical, miss… Ali didn’t look at it from the outside. (folding and unfolding the 

paper) When folded, all the lines match — look, Ali. This is why we can say it is 

symmetrical.  

Suzi: You think you get the same shape when you fold it. You’re right. They match. OK, Cem? 

Cem: Miss, that single shape (pointing to each shape on Figure 4) is both symmetrical and not 

symmetrical. Because if we look at one of the shapes and divide it into two (showing a 

horizontal axis) two parts are not symmetrical. But if we fold the paper to match the two 

shapes and unfold it again, there’s symmetry.  

 

Figure 4. Student work opened up for discussion in Suzi’s class 
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Suzi encouraged students to discuss why they thought the figures in front of them were 

symmetrical. She extended the idea of symmetrical shapes and linked the discussion to investigating 

the reflection symmetry of shapes with respect to a line. She allowed the students to think about how 

the idea of symmetry can be used to analyze complex shapes, thus maintaining a high level of cognitive 

demand. She listened carefully to students’ responses and invited them to comment on each other’s 

ideas. Refraining from immediately evaluating student ideas enabled Suzi to create a classroom 

environment where the accountability of student claims was judged through further mathematical 

reasoning by the students themselves. This was a task where high levels of total cognitive demand were 

accompanied by high levels of attention to student thinking and intellectual authority.  

In the interview following this lesson, Suzi analysed the cognitive demand level of the task and 

how she tried to maintain a high level of cognitive demand upon watching video extracts from the 

lesson. A key point she raised during her analysis was how the sustained work during the PD program 

influenced some of her decisions about how to use tasks in her lessons. She emphasized starting to have 

more trust in the ideas discussed within the PD program as she found repeated opportunities to try 

them several times (Interview, March 25, 2015). This was one of the incidents where Suzi referred to the 

links between participation in the program and her teaching practice.  

Use of materials during task implementation: An analysis of Defne’s lessons also showed changes 

in the total cognitive demand in task implementation. Manifestations of such changes occurred in her 

second and third observations. She used similar materials and similar manipulatives for representing 

place values in both. In the second observation, the task was to compare numbers to find which one was 

greater; the task in the third observation focused on addition with carrying over.  

In the first task, she handed out mats and base blocks and asked the students to model two 2-

digit numbers with them. She also asked the students to compare the two numbers and to insert a 

greater-than or smaller-than sign between the numbers. Base blocks are manipulatives designed for 

representing tens and ones [separately] and can be useful in directing students’ attention to place values. 

However, starting from the set-up and continuing through the implementation of the task, Defne did 

not refer to the tens or ones of the given numbers, nor was there any overt reference to manipulatives. 

Hence, no explicit connections were made with the mathematical concepts involved. The task focused 

mainly on producing the correct answer. This illustrates a task with low total cognitive demand 

resulting from low cognitive demand from the set-up until the end of the task.  

Two weeks later, Defne used beans to represent ones, and cups holding ten beans represented 

tens for modeling numbers. She asked each student to independently model their numbers and started 

the task by discussing their representations. She gave the numbers 26 and 19, which students modeled 

at their desk. There was a whole-class discussion on key issues such as how they represented the 

numbers, what the two cups in 26 represented and how many ones are in a ten. This discussion was an 

early indicator of Defne’s effort to establish and maintain conceptual links in task implementation. She 

then asked the students to model addition by combining all the cups and beans representing the two 

numbers. She asked further questions about the sum and how the materials representing the numbers 

need to be dealt with, such as “can there be 15 ones in the house of ones?”, “what will we do with those 

10 ones?”  
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Defne encouraged her students to make conceptual links between ten ones (i.e., ten beans) to be 

grouped into a ten (i.e., a cup holding ten beans) and how those two entities could be exchanged. The 

interaction was focused on how the manipulatives could be used for linking addition with the concept 

of place value. Earlier in the lesson, Defne had prepared the students for what the manipulations of the 

beans meant. When the students finished working with the manipulatives, she asked them to write in 

their notebooks the operation they had carried out with numerals. She circulated around the room to 

observe their work and wrote the expressions on the board (see Figure 5). She then concluded the 

discussion, focusing on three operations she had seen in students’ notebooks. She asked which one was 

the most appropriate representation of addition with carrying over that they had done with the beans. 

 

Figure 5. Three student representations of an addition operation 

Defne: When I told you to write the operation in your notebooks, I saw these expressions. I’m 

just writing them on the board without any comments…what I saw in your notebooks. I 

want you to look at these. What are the differences? Orhan, what do you see? 

Orhan: Can I say whatever I want? 

Defne: Yes. For example, what do you see on the first one, the second one and the third one? I 

walked around the class and saw these in your notebooks. 

Orhan: Erm…I think the third one makes more sense. The second one is correct too, but they 

didn’t do the carry-over. 

Defne: Any other ideas? Alp? 

Alp: I agree with Orhan. In the first one, they got 35, but the answer is 45. You told us that, 

too. 

Defne: Why do you think they got 35? 

Alp: They might have forgotten to add the carry-over. That might be why they got 35. 

Having made the conceptual links between place value and carrying over, the subsequent 

discussion helped Defne highlight the procedure for carrying over in addition. At the heart of her task 

was a simple procedure, but by making conceptual connections, she maintained the cognitive demand 

at a high level. Moreover, in the implementation of this task, her attention to student thinking was at a 

high level because she was explicitly inviting ideas for discussion and encouraging students to make a 

comparative analysis of these ideas.  

In the interview in which this lesson was discussed, Defne watched the video extracts and 

commented on how asking students’ comments about which of the three representations made sense 

helped them to clarify their understanding. Yet, she also emphasized that there needs to be repetition 

in the classroom about factual information so that students can remember mathematical knowledge and 

she claimed that such elements were missing from this lesson. Even though the quality of 

implementation for the lesson was high, Defne’s comments showed that there would possibly be 

changes in her teaching practice throughout her participation in the PD program and it was not in a 
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stable state (Interview, October 22, 2014). This was indeed manifested in the fluctuations in cognitive 

demand of her tasks especially in the early phases of the PD program. 

A key incident – interconnections between dimensions of task implementation quality: It was in the 

cognitive demand dimension where significant changes occurred throughout the PD program, but there 

were lessons where high total cognitive demand was not accompanied by high levels of attention to 

student thinking and intellectual authority. For instance, the symmetry lesson in Defne’s second-grade 

class showed how tasks that sustain student inquiries about manifestations of a mathematical idea and 

its applications can be impaired by paying little attention to student thinking and intellectual authority.  

In the second half of Defne’s lesson, she used a task where students discussed the features of 

shapes they had cut from a folded sheet of paper. The aim was to explain symmetry by using models. 

Defne first asked the students to offer explanations and followed up on an idea of one student:  

Defne: Emre, come show us your shape and tell your friends what you see in your shape. 

Emre: Erm…I see… 

Defne: (interrupting) What do you see when you fold and then unfold it? (pointing to the two 

sides) What do you see here and over there? 

Emre: There’s a half here, another half there, another half…(trying to describe his irregular 

shape) 

Defne: (to the class) what is the feature of Emre’s shape, between its two sides when we fold and 

unfold it? (folding and unfolding the paper) 

Dilek: They’re the same. 

Defne: They’re the same. Emre, do you agree that they’re the same? 

Emre: (thinking a few seconds) Yes. 

Defne: OK, but why are they the same? Everyone, have a look at your own shape. OK…Let’s 

look at this fold line (pointing to the line on the paper). How does this line, the fold line, 

help us?  

Defne opened up for discussion the idea of folding to see whether the two parts were congruent. 

She drew students’ attention to the fold line by having them glue a thin string over the part they had 

cut out from the paper. Throughout the task, Defne asked questions to draw students’ attention to key 

ideas relating to symmetry. She kept the total cognitive demand level high by not presenting the 

knowledge to the students but by asking questions to encourage them to explore and come up with the 

conceptual features of symmetry. She gave students the opportunity to share their ideas with the whole 

group, but most responses were short or simple affirmations of a previously stated idea. Since it was a 

whole-class discussion, Defne was unable to select individual student responses or make connections 

between them. There were no explanations or discussions about the thinking that student judgments 

were based on.   

After this discussion, Defne finally gave the answer because her students were unable to reach 

a consensus. Acting as the mathematics authority, she provided the answer without going through the 

steps of reasoning. Throughout the task, Defne maintained a high level of cognitive demand by keeping 

the inquiry open for discussion, but attention to student thinking and intellectual authority were not at 

high levels. 
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Discussion 

This study set out to determine whether changes would occur in the quality of implementation 

of mathematical tasks during a PD program and to investigate how such changes occurred. Both 

quantitative and qualitative analyses indicated changes in teachers’ practice over time. The major 

change was in the total cognitive demand in the implementation of tasks.  

Changes occurred in the total cognitive demand of tasks implemented by 3 of the 4 teachers. 

The more statistically significant changes were seen in the two first-grade teachers, Nesrin and Nil. At 

the onset of the PD program, they tended to plan low-level tasks and maintain that low level throughout 

the implementation; as the program progressed, however, they started implementing tasks with higher 

cognitive demand. Defne and Suzi, the second- and third-grade teachers, had relatively higher levels of 

total cognitive demand from the beginning, and they did have changes in the level of cognitive demand 

throughout the program. However, only the increases in Defne’s quality indicators were statistically 

significant. Increasing total cognitive demand during task implementation was among the key aims of 

this PD program, recognizing that research in this area indicates a close link between student success in 

reasoning and problem solving and their teachers’ selecting tasks with a high level of cognitive demand 

that is maintained throughout the implementation of the task (Stein & Lane, 1996; Stigler & Hiebert, 

2004). Establishing a relationship between task implementation quality and student learning outcomes 

was beyond the scope of this study, but this is an area that warrants investigation (Hiebert & Grouws, 

2007; Stein et al., 2017).  

An analysis of changes in cognitive demand level reveals fluctuations in the total cognitive 

demand of mathematical tasks, indicating that changes in teaching practice are complex and often 

nonlinear (Van Es & Sherin, 2008). An investigation of how teacher learning occurs in such a PD 

program would constitute a valuable contribution to the field, possibly by analyzing changes in 

teachers’ practice through teacher learning frameworks (M.K. Stein, personal communication, 

November 11, 2016).  

Though not the main focus of the study, findings about implementation of tasks that indicate 

changes in teachers’ practice and the data from corresponding interviews, point to how the PD program 

influenced teachers’ practice. Teachers participating in this study commented in various interviews how 

the sustained emphasis on quality of implementation of tasks, coupled with repeated opportunities to 

implement tasks, watch their recordings and engage in discussions helped them establish some of their 

practice in the long run. PD programs that run longer than a semester, especially with in-service teachers 

who hold full-time positions, can be cumbersome. Still, sustained work with teachers over long periods 

of time is arguably the best approach to supporting their professional development, and this can most 

efficiently be achieved in their own professional setting (Borko, 2004; Guskey, 2002; Rimbey, 2013). The 

findings of the present study corroborate what has been reported in the literature in terms of changes 

in practice occurring through repeated cycles of observation and follow-up interviews. Further studies 

closely investigating the links between elements and steps of PD programs and changes in teachers’ 

practice would shed light onto the mechanisms of this relationship.  

In the analysis of the total cognitive demand dimension of task implementation, certain issues 

came to the forefront as to how a teacher’s decisions and moves can influence the level of cognitive 

demand. Planning tasks whose cognitive demand is low and maintaining this low level throughout the 

task implementation led to failure to achieve high levels of total cognitive demand in the tasks they 

implemented. Additionally, shifting away from the intended use of the materials and limiting the 

amount of time for students to engage with the tasks without teacher intervention contributed to a low 

level of total cognitive demand.  
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Manipulatives intended to support thinking about mathematics concepts can only operate at a 

high level of cognitive demand if, and only if, teachers use them in a way that leads to conceptual 

connections (Van de Walle, Karp, & Bay-Williams, 2009). Otherwise, work with manipulatives can end 

up simply following established procedures or reciting memorized facts. Coaching teachers on using 

manipulatives is therefore an important element in developing their ability to achieve quality in task 

implementation. Stein and Kaufman (2010) underscore the importance of the productive use of 

materials as an indicator of teacher capacity for effective teaching. Another key factor in maintaining 

high levels of cognitive demand is the allocation of time for students to think about mathematical 

concepts. Taking shortcuts, teachers often point the students in a particular direction, which can lower 

the cognitive demand level of a task if students end up using a procedure without having made 

conceptual connections. Insufficient time to support conceptual connections is a dilemma for many 

teachers (Van de Walle et al., 2009), but they can sustain efforts to maintain tasks at a high level of 

cognitive demand by allocating time for students to work without close teacher steering, when they 

deem it as a worthwhile teaching investment.  

Teachers in the present study showed little change in attention to student thinking and 

intellectual authority. Even though the average of the quality indicators for the second semester were 

higher than those for the first semester as a group, no statistically significant increase was observed over 

time. The only significant change over time occurred in Nil’s attention to student thinking. One 

interpretation of these findings is that attention to student thinking and intellectual authority are 

dimensions of task implementation that are relatively stable and therefore more resistant to change. It 

can be particularly challenging to change a teacher’s exercising intellectual authority in the classroom, 

owing to a deep-rooted wisdom about the role of teachers (Schoenfeld, 1994).  

In a number of tasks during the PD program, implementation was at a high level of quality in 

terms of attention to student thinking and intellectual authority. This generally occurred in tasks where 

total cognitive demand was also high. There was evidence that attention to student thinking (e.g., by 

using students’ ideas in discussion and encouraging them to exercise mathematical authority through 

mathematical reasoning) can help achieve high total cognitive demand. However, in some instances, a 

high level of total cognitive demand was accompanied by a low level of attention to student thinking 

and intellectual authority. Hence, the claim here is that changes in total cognitive demand do not 

necessarily bring about changes in these two dimensions. This is a challenge for teacher PD program 

designers to tackle as they plan activities to support teacher growth in all three dimensions.   

The aim of this research was not to study factors that influence change in task implementation 

quality. Rather, it examined changes in how teachers implemented tasks. However, differences between 

the two first-grade teachers and the other two teachers in implementation quality and in the changes 

taking place suggest that curriculum content and a myriad of other factors related to individual teacher 

background are possible routes for further inquiry.  

One key difference between the two pairs of teachers was the number of years of teaching 

experience. Both first-grade teachers had 30 years’ experience versus under 10 years’ experience for the 

other two teachers. The former started out with low total cognitive demand scores, but the increase they 

achieved was greater than that of the younger teachers. Experience has previously been reported not to 

have clear links to task implementation quality (e.g. Stein & Kaufman, 2010), but this might not be the 

case when the context is a PD program. Further research is necessary to tease out relationships between 

individual teacher characteristics and their ability to improve the quality of their task implementation 

in a PD program. While experience can be a potentially influential construct, teacher knowledge needs 

to be included in future research on this topic (Charalambous, 2010). 
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Conclusion and Suggestions 

This study investigated the quality of teachers’ implementation of mathematical tasks in a PD 

program. Increases were observed in the total cognitive demand dimension of implementation quality. 

The small sample size does not allow generalizing about the influence of PD programs on change in 

teaching practice, but the detailed contextual accounts of what took place in the classrooms can inform 

future research.  

One potential area for future research is the interrelationship between the dimensions of 

implementation quality and the building of PD programs that focus on these relationships. The current 

study provides evidence that taking this route might be fruitful. Other factors such as mathematical 

content and the facilitator as intervening variables can also be investigated. Even though the role of the 

facilitator was not a focus in this study, other researchers highlight its potential influence on PD 

program outcomes (Le Fevre & Richardson, 2002). 

Extending this focus to mechanisms of communication and participation in PD activities would 

be the next step. As findings determine how teachers behave and identify which changes occur in task 

implementation, research could then be conducted at multiple research sites and subsequently with 

multiple methods. 
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Appendix 1. Codebook for Using the Classroom Observation Coding Instrument for Tasks  

(adapted from Classroom Observation Coding Instrument, Stein & Kaufman 2010) 

Cognitive Demand (preliminary coding) 

Decide on the scores by thinking about the majority of the students the majority of the time. 

a.  Instructional task in the lesson: ______________________  

Length: ____________  

b. Cognitive demand of the task as it appeared in written/resource materials (circle one):  

1  No mathematical activity  

2  Memorization  

3  Use of Procedures Without Connections to Meaning, Concepts or Understanding 

4  Use of Procedures With Connections to Meaning, Concepts or Understanding 

5  Doing Mathematics  

c. Cognitive demand of the task as it was set up by the teacher (circle one):  

1  No mathematical activity  

2  Memorization  

3  Use of Procedures Without Connections to Meaning, Concepts or Understanding  

4  Use of Procedures With Connections to Meaning, Concepts or Understanding  

5  Doing Mathematics  

d. Cognitive demand of the task as it was enacted by students and teacher (circle one):  

1  No mathematical activity  

2  Memorization  

3  Use of Procedures Without Connections  

4  Use of Procedures With Connections  

5  Doing Mathematics  

Decision rules for coding the cognitive demand of tasks: 

• Refer to the cognitive demand descriptions in TAG when making decisions. 

• If set up and enactment are interwoven, code set up same as “Enactment”. 

• If there is no available written task and the set up is interwoven, code written task and set up same as 

“Enactment”. 

• Procedure or concept needs to be mathematically correct or accurate for the teaching to be labelled as 

memorization, procedures without connections, procedures with connections or doing mathematics. 

Total Cognitive Demand 

Cognitive demand score for materials to setup + cognitive demand score for setup to enactment 

(possible scores from 2 to 8) 

Maintenance of cognitive demand, materials to setup:  

Based on coding of each observed task using the following scale: 

1 point—The teacher maintained a low level of cognitive demand from one phase to the next.  

2 points—The teacher transformed a task from a high level of cognitive demand to a low level of 

cognitive demand. 

3 points—The teacher maintained a high level of cognitive demand between two phases but 

transformed the task from DM to PWC or from PWC to DM. Although the teacher still maintained a 

high level of cognitive demand, the nature of that cognitive demand essentially shifted in a way that 

was not consistent with the materials or the teachers’ setup. Thus, a teacher received fewer points than 
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if he or she had maintained the same type of high-level cognitive demand from one phase to another.  

The rare occurrence of raising a task from a low level of cognitive demand to a high level of cognitive 

demand would also be credited in this category.  

4 points—The teacher maintained the same high level of cognitive demand from one phase to another 

without transforming the task into another type of high-level demand or to a lower level of cognitive 

demand.  

Maintenance of cognitive demand, setup to enactment: 

Based on coding of each observed task; coded with the same point system as cognitive demand, 

materials to setup (above)  

Teacher Work to Uncover Student Thinking (circle one):  

0  The teacher did no work to uncover student thinking; he or she did most of the talking in the lesson 

and/or asked questions with short or one-word answers.  

1  The teacher did some work to uncover student thinking by asking some open-ended questions, by 

asking for some explanations, by arranging for public sharing of student responses, and/or by 

listening respectfully.  

2  In addition to #1 above, the teacher purposefully selected certain students to share their work 

during whole-class discussion because she wanted the whole class to hear about the mathematical 

approach the student took. However, the teacher did not sequence or connect students’ responses in a 

mathematically meaningful way (i.e., to move the class toward the mathematical goal of the lesson).  

3  In addition to #1 and #2 above, the teacher sequenced or connected students’ responses in a 

mathematically meaningful way to make student thinking productive for the class as a whole (i.e., to 

move the class toward the mathematical goal of the lesson).  

Decision rules for coding the teacher work to uncover student thinking: 

• The purposeful selection criteria should have judged according to what was observed in the lesson (e.g. what 

the teacher tells or does), not on what the teacher expressed elsewhere about the students. 

• One difference between 1 and 2 is that in 1 teacher allows limited opportunities for uncovering student 

thinking, while in 2 teacher provides a balance between teacher talk and student talk in uncovering thinking. 

Intellectual Authority (circle one): 

0  Judgments about correctness were derived from the text or the teacher, with no appeal to 

mathematical reasoning.  

1  Judgments about correctness were mostly derived from the text or the teacher. Nevertheless, some 

appeals to mathematical reasoning were made.  

2  Judgments about correctness were primarily (most of the time) derived from mathematical 

reasoning and discussion during the class. It was primarily (most of the time) the teacher engaging in 

reasoning and modeling for the students. 

3  Judgments about correctness were primarily (most of the time) derived from mathematical 

reasoning and discussion during the class. It was primarily (most of the time) the students engaging in 

reasoning through the teachers’ support. 

Decision rules for coding intellectual authority: 

• If teachers use both mathematical reasoning and text or the teacher as the judgement criteria for 

correctness, their teaching should be coded as 1. This is what most of the teachers would be coded as. 


