

Education and Science

Vol 44 (2019) No 197 155-183

155

A Model Suggested for Programming Teaching: Programming in Seven
Steps

Kürşat Ali Erümit 1, Hasan Karal 2, Güven Şahin 3, Dilara Arzugül Aksoy 4,
Ayşegül Aksoy Gencan 5, Ali İhsan Benzer 6

Abstract Keywords

There are a number of studies in the literature revealing that
programming instruction has positive effects on development of
different cognitive skills. However, there are scarcely any studies
suggesting pedagogical approaches to how programming should
be done. Therefore, this study focused on how to do programming
instruction that target developing students’ cognitive skills. In this
study, it was aimed to suggest a model for teaching in order to
develop various cognitive skills of students. Within the scope of the
study, a programming instruction model was created, and it was
called Programming in Seven Steps (PSS) model. As research
design, special case study was used from qualitative research
methods. The research team consisted of two groups: design team
(1 faculty member from the department of Computer Education
and Intructional Technologies (CEIT), 2 master’s degree students,
and 2 PhD students) and a Design Evaluation Team (DET) (10 IT
and Software teachers who work in secondary schools affiliated to
the Ministry of National Education) in the process of constructing
the PSS model. During the research, the documents and interviews
with the design evaluation team were analyzed with the purpose
of determining the steps of the PSS model. The study elaborates the
process followed to create the model, the features of the proposed
model, and interviews with the design evaluation team. This article
details the overall path to designing of the model, the features of
the model, and DET interviews. It is aimed that the model
introduced in this study will become a guide for educators who
want to teach programming at secondary school level.

Programming teaching

Problem solving

Algorithmic thinking

PSS teaching model

Lesson plans

Secondary school

Coding

 Article Info

Received: 12.29.2017

Accepted: 09.25.2018

Online Published: 12.18.2018

DOI: 10.15390/EB.2018.7678

1 Trabzon University, Fatih Education Faculty, Computer and Instructional Technology, Turkey, kursaterumit@gmail.com
2 Trabzon University, Fatih Education Faculty, Computer and Instructional Technology, Turkey, karalhasan@gmail.com
3 Trabzon University, Fatih Education Faculty, Computer and Instructional Technology, Turkey, guvennsahinn@gmail.com
4 Trabzon University, Fatih Education Faculty, Computer and Instructional Technology, Turkey, dilaraarzugulaksoy@gmail.com
5 Trabzon University, Fatih Education Faculty, Computer and Instructional Technology, Turkey, aysegul.aksoy.61@gmail.com
6 Trabzon University, Fatih Education Faculty, Computer and Instructional Technology, Turkey, aibenzer@gmail.com

mailto:kursaterumit@gmail.com
mailto:karalhasan@gmail.com
mailto:guvennsahinn@gmail.com
mailto:dilaraarzugulaksoy@gmail.com
mailto:aysegul.aksoy.61@gmail.com
mailto:aibenzer@gmail.com
https://orcid.org/0000-0003-4910-4989
https://orcid.org/0000-0002-3555-050X
https://orcid.org/0000-0003-3901-5819
https://orcid.org/0000-0003-0666-8362
https://orcid.org/0000-0002-1341-8823
https://orcid.org/0000-0002-5032-7058

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

156

Introduction

The developments in science and technology cause skills expected from individuals to
differentiate. Trilling and Fadel (2009) define the 21st century skills as verbal and written
communication, critical thinking and problem solving, professionalism and work ethics, collaboration
and teamwork, technology enforcement, leadership and project management, and working in various
teams. ISTE (2016) emphasized that students should have certain standards for learning effectively.
These standards were classified as creativity and innovation, communication and collaboration,
research and information flow, critical thinking, problem solving and deciding, digital citizenship, and
use of technology. Besides these, computational thinking skill is also regarded necessary.

Denoted as a broad concept covering skills of problem solving, system design, and
understanding human behaviors (Wing, 2006); computational thinking also refers to the use of
computers to develop cognitive processes and problem solving skills (Sanford & Naidu, 2016).

The ability of computational thinking, which involves using algorithms to solve problems
effectively (Atmatzidou & Demetriadis, 2016; Choi, Lee, & Lee, 2016), is at the center of computer science
with this feature. For this reason, besides understanding the algorithm design principles, a learner’s
solving a problem with appropriate algorithms in reference to these principles can improve the learner's
computational thinking skill (Choi et al., 2016). Designing appropriate algorithms for solving a problem
is closely related to algorithmic thinking skills. Algorithmic thinking ability is expressed as ordering of
actions by an individual by thinking creatively and logically (Ziatdinov & Musa, 2012) and is a key skill
that ensures development of other cognitive skills directly related to programming.

According to Futschek (2006), algorithmic thinking consists of various sub-skills related to
comprehendin and configuration. These sub-skills are the ability to analyze a given problem, to fully
express a problem, to produce a strategy for a given problem, skill of constructing an algorithm for a
given problem using the strategies, the ability to think in all possible special and normal cases, and the
skill of increasing the efficiency of an algorithm. Futschek (2006) argues that algorithmic thinking can
also be developed with applications such as games (Maze) and sorting (Parallel Sorting) in which
different strategies can be applied independently of the computer environment. Therefore, students can
test an algorithm which they develop for solving a problem, before computerizing it.

One of the ways to develop algorithmic thinking ability is programming instruction. In the
literature, it is stated that programming develops various skills of learners. It is known that:

• Programming develops problem solving skills of students, (Bergersen & Gustafsson, 2011;
Brown et al.; Kalelioğlu & Gülbahar, 2014; Lai & Lai, 2012; Lai & Yang, 2011),

• It has positive effects on cognitive learning (Clements & Sarama, 2003; Crescenzi, Malizia, Verri,
Diaz, & Aedo, 2012; Grover & Pea, 2013; Utting, Cooper, Kölling, Maloney, & Resnick 2010),

• It enhances high-level thinking skills of students (Kafai & Burke, 2014; Shih, 2014),
• It increases motivation (Akpınar & Altun, 2014),
• It improves creative thinking ability (Fesakis & Serafeim, 2009; Kobsiripat, 2015).

Besides developing cognitive skills of students, programming requires high-level thinking
abilities (Law, Lee, & Yu, 2010). For this reason, it is stated that the programming instruction process is
quite difficult (Helminen & Malmi, 2010) and students have a lower level of success in this lesson
(Robins, Rountree, & Rountree, 2003). These difficulties occur during learning of the basic programming
concepts such as structure of program (Lahtinen, Ala-Mutka, & Jarvinen, 2005), cycles (Ginat, 2004), and
algorithm structure (Seppala, Malmi, & Korhonen, 2006). At the same time, students may have
difficulties in the programming course because of the teaching method used. In many studies, it is
discussed how programming instruction should be despite the mentioned difficulties (Coull & Duncan,
2011; Lahtinen et al., 2005).

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

157

In order to increase success in programming and facilitate understanding, it is initially required
to teach the logic of algorithm to students (Ala-Mutka, 2004). Due to this need, interesting and amusing
visual programming languages have been developed to facilitate learning for beginners (Schwartz,
Stagner, & Morrison, 2006). In text-based programming, code-sequencing emerges as one of the most
troublesome components for students (Özmen & Altun, 2014). Code blocks are offered to facilitate
understanding and implementing by overcoming this challenge in visual programming (Wilson &
Moffat, 2010). Sáez López, González, and Cano (2016) pointed out that working on projects with the aid
of visual programs increases motivation and willingness of students. Most studies reported that the use
of visual programming accelarets comprehending (Naharro-Berrocal, Pareja-Flores, Urquiza-Fuentes,
& Velazquez-Iturbide, 2002). For beginner-level learners of programming; programs such as Scratch
(Malan & Leitner, 2007; Wu, Chang, & He, 2010), kodu (Stolee & Fristoe, 2011), StarLogo (Klopfer &
Yoon, 2005), and Alice (Kelleher, Pausch, & Kiesler, 2007) are suggested.

According to Robins et al., (2003), teaching of programming must focus on not only learning
properties of the new language but also use of such properties in different situations, particularly on
the idea underlying the basic program design. Linn and Dalbey (1989) offers the “the chain of cognitive
accomplishments” for programming instruction. This chain starts with language features. The second
circle consists of designing skills covering templates, planning, testing, and reformulating. The third
circle is a problem solving skills that involves adapting knowledge and strategies to a new
programming language.

Figure 1. Cognitive Competences Necessary for Programming Teaching (Linn & Dalbey, 1989)

The chain in Figure 1 symbolizes introduction to programming. In a setting of teaching in this
mode, an instructor should clearly express the control structures, data structures, program design, and
the problem area. Otherwise, it will not be possible to form a strong background (Winslow, 1996).
During instruction process, student motivation can be increased by giving visual and animation-based
programming activities. At that point, it is considered important that the instructor explains his visual-
based activity in reference to the basis concepts of programming (Kurland, Pea, Clement, & Mawby
1989). Spohrer and Soloway (1989) also made some recommendations regarding programming
instruction:

• Use graphical languages for flow control
• Use a simple machinery model
• Before determining variables and constant names, specify a simple and consistent naming rule
• Provide design samples based on spatial metaphors
• Gradually decrease the support to students

Language
Features

Problem
Solving Skills

Design
Skills

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

158

During the programming teaching process, students should be given continuous and rapid
feedback. In addition to this, it is recommended to allow students for their own learning (Linn & Dalbey,
1989) and collaborative works (Van Gorp & Grissom, 2001; Williams, Wiebe, Yang, Ferzli, & Miller,
2002).

Because there are scarcely any studies suggesting pedagogical approaches to how
programming should be done, there arise differences in trainings run for the same age group in
educational institutions. These differences occur in the form of differentiation of activities and followed
steps for programming instruction. In the case of an instruction program, which is aimed to ensure
development of students’ cognitive skills, this situation could lead to;

1. Turning of the lesson into an animation creation and leisure time field rather than developing
cognitive skills,

2. Dragging away of students from programming due to abundance of animation-like activities in
the lesson

3. Losing of probable positive effects of the IT and software course on other courses
4. Losing importance of the course for students, parents, and authorities
5. Failure of the instruction program to reach the goal.

One of the main reasons for this situation is that animation-related activities that teachers try to
teach in schools can be realized by students by themselves due to the easy access to and learning of Web
2.0 technologies (Karaman, Yıldırım, & Kaban, 2008; Kam & Katerattanakul, 2014). Neglecting effects
on development of cognitive skills may cause students to perceive programming instruction equal to
training on animation preparation (Lee, 2011; Scaffidi & Chambers, 2011) and underestimate the course
and thus banalize the training in schools gradually being questioned (Kalelioğlu & Gülbahar, 2014;
Kukul & Gökçearslan, 2014; Oluk & Saltan, 2015; Yükseltürk, Altıok, & Üçgül, 2016).

In the 21st century, programming teaching has an important place in the development of the
skills necessary for individuals to be productive and active. For this reason, programming teaching has
started to take its place in the curriculum of many world countries (Balanskat & Engelhardt, 2015). It is
seen that countries integrate programming teaching into curricula not only in order to develop
programming skills but also to develop logical thinking and problem solving skills of learners
(Balanskat & Engelhardt, 2015). However, programming teaching is seen as a difficult process to
perceive for students (Porter & Calder, 2004). This is because the programming tools and programming
languages have a structure hard to understand, the sytactic rules for the programming languageare
difficult, traditional methods are used in programming teaching, and students are not competent in
algorithmic thinking (Byrne & Lyons, 2001; Futschek, 2006). Departing from this, the aim of this study
is to propose a teaching model that can be used in the programming teaching process for the
development of algorithmic thinking, problem solving and programming skills at the secondary school
level.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

159

Method

Research Model
In this study; it is aimed to suggest a model for programming instruction to develop problem

solving, algorithmic thinking, and programming skills at the secondary school level and opinions of the
Design Evaluation Team (DET), composed of teachers, were taken to this end. In this direction, first of
all, appropriate steps for programming instruction were searched and the steps of the PSS model were
determined through document analysis. Then, the DET were interviewed by using semi-structured
interview forms in order to check the cognitive level, duration, and applicability for overcrowded
classrooms of the lesson plans prepared in this study. Then the plans were revised accordingly. As
research design, special case study was selected amongst qualitative research methods. Special case
study is defined as a research pattern by which qualitative data collection methods such as observation,
interview, and document analysis are used to explore perceptions and facts in a realistic and holistic
manner in their natural setting (Yin, 2017). The pattern was preferred also because it allows flexibility
to researcher during design and implementation of the study (Silverman, 2013).

In this study, the special case design was selected for

• Analyzing the key words and document analyses on databases for the purpose of identifying
the PSS steps,

• In-depth analysis of the lesson plans, activities, and PSS model steps with content analysis
following interviews with certain DET members,

• Better revealing feelings, thoughts, and emotions by means of qualitative methods, and
• Describing the findings in a qualitative manner.

Research Group
The study employed two study groups at stages of formation of the PSS model and evaluation

of the lesson plans prepared according to the created model. The design team (DT) consisted of 5 experts
(1 CEIT faculty member, 2 graduate students, 2 doctoral students) and the 10 design evaluation team
(DET) consisted of another 10 people (10 teachers of IT and Software Course employed by the Ministry
of National Education). The personal information about the TE is given in Table 1 and DET in Table 2.

Table 1. Design Team

Team
Member

Title/ Level of Education

Experience

Bachelor Degree
Programming

Programming
Teaching

C1 Assistant Professor 21 years 14 years Computer Teacher
SP1 Lecturer-PhD Student 17 years 14 years Computer Teacher

SP2 PhD Student 8 years
Computer Education and
Instructional Technology
Teacher

SM1 Graduate Student 6 year
Computer Education and
Instructional Technology
Teacher

SM2 Graduate Student 6 years
Computer Education and
Instructional Technology
Teacher

The design team indicated in Table 1 took a role in devising the PSS model as well as the lesson
plans and the activities in accordance with the model. The study was conducted during the 2016-2017
autumn semester for 6 hours in 16 weeks. The teachers who currently teach in secondary schools
affiliated with the Ministry of National Education (Design Evaluation Eeam) were in charge of

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

160

evaluating the draft model, lesson plans, and activities as seen in Table 2. Activities and lesson plans
were prepared for each topic by the DT so that teachers can see the concrete steps of the PSS model and
thus make a more realistic assessment. During interviews with the DET; firstly, the steps of the PSS
model were explained and the corresponding actions and activities were shown in the lesson plans, and
then the opinions of the teachers were taken. All of the teachers have a bachelor's degree in Computer
Education and Instructional Technology.

Table 2. Design Evaluation Team

Teacher
Experience

Teaching Programming Teaching
Ö1 13 years 4 years
Ö2 10 years 4 years
Ö3 10 years 4 years
Ö4 6 years 4 years
Ö5 6 years 4 years
Ö6 14 years 3 years
Ö7 12 years 2 years
Ö8 10 years 2 years
Ö9 10 years 2 years
Ö10 10 years 1 years

The activities and lesson plans prepared by the DT were checked regarding conformity with the
cognitive level, applicability in large classrooms, and duration by means of interviews with the DET.
Subsequently; the model, the lesson plans, and the activities were developed in line with the comments.

The Course of Research
In line with the study aim, the research process was carried out following the ADDIE design

model. ADDIE is a teaching design model consisting of the initials of the words Analyze, Design,
Develop, Implement, and Evaluate, which involves five steps. The ADDIE model was preferred in this
study as it is a basic model that can be suitable for any learning and includes components of other
instructional design models. The course of research following the model is depicted in Figure 2 with
detailed actions at each stage.

Figure 2. The Course of Research According to the ADDIE Design Model

(1) Analysis
The stage of analysis was performed in three steps as problem analysis, task analysis, and

instructional analysis. In problem analysis, the DT reviewed the literature. It was found striking that
there are only few studies suggesting a pedagogical approach to teaching programming at the
secondary school level. Moreover, it was seen that there is no common approach to how programming
can be done. For this reason, the present study was started from the question 'How should programming

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

161

instruction be done?' In task analysis, the result obtained from the problem analysis led to the task as
'proposing a model for programming instruction that includes algorithmic thinking and problem
solving skills competencies at the secondary school level'. Finally, within the scope of instructional
analysis; attainments under "Concepts and Approaches to Problem Solving", " Let's Recognize the
Programming Environment ", "Variables", "Conditionals", and "Cycles" were retrieved taken from the
MEB (2017) Curriculum for IT and Software Course.

(2) Design: Identification of the Instructional Steps
The document analysis performed for identification of instructional steps followed the

suggested by Yıldırım and Şimşek (2011) as access to documents, confirming the authenticity,
comprehension of documents, analyzing data, and using data.

Access to Documents
To start with, literature review was done on algorithmic thinking skill as the basis of

programming instruction by using key words such as Algorithmic Thinking, Curriculum, Primary and
Secondary education, Problem Solving, Computational Thinking, and Deeper Learning on Google Scholar,
Science Direct, and Eric. The review gave 15 studies, 6 of which were chosen as they discuss levels and
steps that can be utilized in the instruction process. The samples utilizing certain pedagogical
approaches to implementation of activities (binary coding, drama, etc.) but not dealing the whole lesson
and those not detailing the course of study were discarded. Papers were used as references in this study
in order to be able to set the limits of the clearly considering applicability of the study. The examples
scrutinized for this purpose are listed in Table 3.

Table 3. Examined Documents
Types of Documents Examined Resources

Papers

Zsakó and Szlávi (2012), ICT Competences: Algorithmic thinking
Vasconcelos (2007), Basic Strategy for Algorithmic Problem Solving
Futschek (2006), Algorithmic thinking: The key for understanding computer
science
Committee on Logic Education (2008)
Szántó (2002) as cited in Zsakó and Szlávi, 2012, p. 55
Garner (2003), Learning resources and tools to aid novices learn programming

Confirming the Authenticity
It is important to confirm the authentic nature of the documents reached for validity of the

study. In this context, the search was conducted with the keywords mentioned above in the Google
Scholar, Science Direct and Eric databases, and the authenticity of the published articles was confirmed
by checking the journals. The resources were checked particularly for index and existence of editorial
board.

Comprehension of Documents
At this stage, the documents were cross-checked systematically by examining the levels and

steps that could be used in the process of instruction. The papers were subjected to content analysis to
elicit the themes by the DT.

Analyzing Data
The themes derived in the previous stage are shown in Table 4.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

162

Table 4. Comparison of the Themes Identified for the Instructional Steps

Studies
Understand
the problem

Devise a
plan

Comparing
plans

Devise an
algorithm

Code the
algorithm

Identify and
correct an
error in a
different

code

Prepare and
Code New
Algorithms

Zsakó and
Szlávi (2012)

Vasconcelos
(2007)

Futschek
(2006)

Comittee on
Logic
Education
(2008)

Szántó (2002)
Garner (2003)

The analysis process was completed with the simultaneous work by the DT through consensus.
The themes elicited by the team were examined at meetings and it was seen that the themes intersect in
the factors of Understand the Problem, Devise a Plan, Compare Plans, Devise an Algorithm, Code the
Algorithm, Identify and Correct an Error in a Different Code, and Prepare New Algorithms and Code.
Information on the identification of the themes was given under the heading "Validity and reliability of
the study”.

Using the Data
The results and data obtained from document analysis are discussed in under findings and

results. The steps included in this study following examination of the levels and steps that can be used
as instructional steps are detailed under the study findings, while steps of the created PSS model are
given under the results.

Identifying the Lesson Plan Evaluation Criteria
By using the lesson plan evaluation criteria attached as Annex-1, views of 150 teachers were

obtained as a response to the question “What do you think should be considered in preparing a lesson
plan?” As a result of analysis of the responses by the Design Team, 3 common criteria were identified
as “conformity with the cognitive level”, “applicability in large classrooms”, and “conformity with
duration”. Table 5 displays distribution of these criteria according to the DT views.

Table 5. Distribution of the Criteria (n=150)
 f %
Conformity with the cognitive level 96 64
Conformity with duration 64 42,66
Applicability in large classrooms 86 57,33

It is seen in Table 5 that the teachers stated that activities to be designed must comply with the
cognitive level as the most important consideration while preparing a lesson plan. As the second most
important item, they stressed that these activities should also be suitable for being applied in
overcrowded classrooms. Another point that they draw attention to is that the activities must be tailored
to the duration of the lesson.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

163

(3) Refinement: Preparation of Activities and Lesson Plans by the Design Team
Taking into consideration the MoNE curriculum, the DT began to develop the lesson plans and

activities to be covered. Activities to be developed are of crucial importance for feasible steps within the
SSP model. In the development of activities, compliance with students’ cognitive levels, their
applicability in overcrowded classrooms, suitability for the duration of the class, and adaptability to the
computer environment were taken into consideration. Another point to be considered when
determining the activities is that these activities must be designed analogously. Analogy covers the
process of understanding an unknown event by means of a known event, comparing and establishing
relations between the two events (Çıray & Erişti, 2014). Analogy as a method has a crucial role to play
in making students active participants and encouraging their inquisitive and creative skills (Yuretich,
Khan, Leckie, & Clement, 2001). In this study, the activities were created in accordance with analogies
and allowing students to express themselves freely during the activity. Also, attention was paid to
including examples from daily life. This type of activities improves clarity of topics by simplifying topics
of programming which are difficult to be comprehended by students. In addition, it was considered
important that the activities in the lesson plans involve a problem situation with multiple strategies for
solution of the problem. The DT members presented their individual works in group meetings for
evaluations of the group members. Decisions taken regarding the individual works during the meetings
were noted and the plans were re-evaluated by the other group members. As a result, the final version
of plans was approved in the light of the design team’s comments.

(4) Implementing: Submitting the Plans to Teacher Views
After drafting as commented by the DT, the lesson plans were evaluated against the lesson plan

evaluation criteria above through semi-structured interviews with the DET. The interview questions are
attached as Annex-2.

(5) Evaluation: Updating the Plans
The lesson plans were updated by taking into consideration the data obtained through the DET

interviews. In order to finalize the lesson plans, all teacher interviews and updates were completed in
about 6 weeks after the 10-week process and the plans were made ready for implementation. Since this
study focuses on the PSS model and relevant discussions, the process of developing appropriate lesson
plans are not described here. Detailed information and sample lesson plans are available in Şahin (2018).

Validity and Reliability of the Study
The qualitative data, which include the participants' expressions, the process of combining,

simplifying, and interpreting of the researcher's observation and reading (Merriam & Tisdell, 2015),
were analyzed with content analysis. Once the semi-structured interviews with teachers and students
had been recorded, they were analyzed and data obtained through analysis of the recordings were
transferred onto the computer. Later, as Creswell (2013) stated, the data were edited, coded by themes,
and finally the themes were supported with direct quotations. Measures were taken to prevent factors
that may threaten validity and reliability throughout the research process. For example, the participants
were informed in advance of the interviews, participation was scheduled completely on voluntary basis,
and participant information was kept confidential. Voice recordings were made during interviews, the
researcher kept notes, and every attempt was made to record the data without missing anything. All of
the collected data were carefully stored so that the results could be verified. In the analysis phase of the
data, three researchers who are specialized in Computer Education and Instructional Technology took
part and then consensus was sought among the analysis results. Each of the researchers determined the
themes and the areas concerned separately. The themes initially determined by the researchers were
found to be consistent by 92%. The researchers then came together and reached a consensus on the
themes and related areas. Where necessary, the data were confirmed by re-checking with the
participant. Finally, the research report was drawn up with a detailed description of the whole process,
and a transferable research was obtained. The researchers themselves were actively involved in
analyzing and reporting the data.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

164

Results

In order to determine the instructional steps in this study, the data obtained from the literature
review by the DT were assessed by the whole team and 7 steps were reached through consensus. In this
process; first, the relationship between the steps and the cognitive skills was checked. Next, suitability
of the steps for students’ cognitive levels and applicability in overcrowded classrooms were discussed.
In the findings section; the findings from document analysis and DET views are given which helped
identify the steps of the PSS model.

Identifying the Steps of the PSS Model
The PSS model was designed to realize programming instruction to develop algorithmic

thinking, problem solving and programming skills of secondary schoolers. The studies satisfying the
relevant criteria were reached through document analysis and findings are shown in Figure 3. The steps
shown in Figure 3 are described as algorithmic thinking steps in the relevant studies.

Figure 3. Stages of Algorithmic Thinking

Overall evaluations by TD regarding the approaches in Figure 3 are indicated as follows:

It is seen that the stages designed by Zsakó & Szlávi (2012) are targeted to manage the process
of algorithmic thinking by grouping it. For example, the step of coding with the help of the
programming language is introduced in the fifth step, whereas the others introduce the same stage

Zsako & Szlavi (2012)

1. Recognizing and
Understanding the
Algorithm

2. Applying Algorithm

3. Algorithm Analysis

4. Applying Preparation

5. Realizing Algorithms

6. Editing and Modifying
Algorithms

7. Designing Complex
Algorithms

Vasconcelos (2007)

1. Reading and
Understanding the Problem
Statement

2. Selecting the Concepts
for Application

3. Describing the Problem
Qualitatively

4. Formulating the Solution

5. Testing and Explaining
the Solution

Futschek (2006)

1. Analysing the Problem

2. Identifying the Problem

3. Finding the Required
Basic Actions

4. Building the Right
Algorithm for the Problem
by Using the Basic Actions

5. Anticipating All
Probabilities concerning the
Problem Status

6. Developing Effectiveness
of the Algorithm

Comittee on Logic
Education (2008)

1. Algorithm Application

2. Algorithm Development

3. Algorithm Analysis

4.Recognizing and Perceiving
the Problems That Cannot Be
Solved with Algorithm

Szántó (2002)

1. Application/ Coding

2. Algorithm Writing

3. Analogic Thinking

4. Being Able to Change the
Algorithm and Adapt to
Current Situation

5. Production /Derivation

Garner (2003)

1. Analysing the Problem

2. Designing and Reviewing
the Algorithm/Solution

3. Applying the Algorithm

4. Testing and Reviewing the
Algorithm

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

165

earlier. In this study, it was stated that each stage was built on the previous stage, and the relations of
each stage to cognitive skills were underlined. It was stated that advanced stages require high-level
thinking skills.

In his five-stage plan, Vasconcelos (2007) seems to place more focus on understanding and
explaining the problem. On the other hand, not much emphasis is placed on editing and improving
algorithms and designing complex algorithms. Still, it is important to elaborate what each step
represents and what needs to be done then.

In Futschek’s (2006) six-stage algorithmic thinking process, more stress is placed on
understanding and explaining of the problem. However, the steps of creating complex algorithms
receive less emphasis and the steps that make up the stages do not get much explanation.

Committee on Logic Education (2008) groups together the steps that describe the algorithmic
thinking process and gives less place to the steps of analyzing and correcting errors, and designing
complex algorithms particularly after testing the algorithm. It would be more appropriate to discuss the
stages in more detail since this instruction is planned for the secondary education level.

Szántó (2002) as cited in Zsakó and Szlávi (2012) groups distinct steps in algorithmic thinking
process, thus reducing the total number of steps.

Likewise, Garner (2003) reduces the number of steps by combining the steps designed. The steps
that make up the stages are not discussed in detail.

In the study, the stages defined as levels of algorithmic thinking skill were then checked against
the criteria of cognitive skills coverage and applicability in overcrowded classes, and the instructional
steps were identified consequently.

Views of the DET concerning the PSS Model
Following the semi-structured interviews with the DET, the findings related to the applications

at steps of the PSS model were tabulated in Table 6 under the title of Compliance Check of the Model.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

166

Table 6. Compliance Check of the Model

Steps
Appropriate

(n=10)

Updateable (n=10)
Topics Recommendations (n=10) Compliant

to the level
Applicability

Understand the
Problem

8 2 -

Conditionals

“I think it is an appropriate step. They already do such
calculations in mathematics class so they won’t have difficulty.
Suitable for their level. But I suggest that what you think is nice
but can it be simplified? I think it'd be easier to implement if you
can do it in a simpler framework of events because it can be
challenging.”(Ö5)

Cycles

“The step is absolutely necessary and logical. The activity was a
bit difficult for me, considering students’ level. If the child is
struggling at first, there can be an impression on him that s/he can
not succeed, so the activity may be simpler.”(Ö7)

Devise a Plan 8 2 - Conditionals

“It seems difficult for students to be able to overcome it
individually. If group work is done, at least those who can not
overcome will benefit from it.” (Ö6)
The idea is very nice, but the activity could possibly be simplified
by shortening it. It seems a bit complicated in this way.”(Ö7)

Compare the Strategies 9 - 1 Cycles
“If it is not a case of writing on the board but a different kind of
writing practically or transferring in a different way, even 20
minutes will be too long, but it is a waste of time because it is the
task of writing on the board.”(Ö9)

Devise an Algorithm 5 - 5

Conditionals
“When we think about our own classes, only the space in front of
the board exists and this may not be enough. In such a case, it
would be more convenient if there were an alternative like going
out of the class or using the garden or the corridor.”(Ö5)

Cycles “Classroom environment can be preferred for PC-free
activities.”(Ö8)

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

167

Code the Algorithm 2 8 -

Variables

“At the beginning of this application, we can create a variable for
the children and make an example of using that variable in the
calculation.”(Ö1)
“In order to be able to do such coding, it is necessary to tell the
children the mathematics of this work. Instead of starting with an
application like this about variables, starting can be made with a
much simpler calculation process.”(Ö3)
“The first example we give can be difficult for the child to
understand what s/he is doing. I think it can be started with an
example that the child will do one single transaction.”(Ö8)

Cycles

“Processes up to the computer activity have been described very
well, but the first example in transition to the computer
environment has been difficult. I think that it would be better to
start at medium level in computer based projects.”(Ö2)
“It can be started with a simpler example so that the child can
discover it.”(Ö5)

Conditionals
“I'd show something simpler if it were me. Directly thus and so. It
may be healthier to start with a shorter example and then make it
more difficult. This sounded very hard to me for the first example.
The same example may be simpler.”(Ö8)

Identify and correct an
error in a different code

9 1 - Conditionals
“Before switching to the application for students at code editing
stage, it could be more efficient if there were a lecture based on a
structure using similar codes.”(Ö4)

Prepare and Code New
Algorithms

10 - - -

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

168

The DET evaluations of the lesson plans following the PSS model against the applicable criteria
of cognitive level, duration, and applicability in crowded classrooms in Table 6 demonstrates that the
steps of the SPP model are substantially appropriate. Teachers' evaluations of the steps are given below.

“Understand the Problem”

Variables- “I see fit for the sixth grade, so there are very descriptive sentences already
in the problem, as far as I can see, there are no words that they will not understand as
a term or as an expression, I see it quite understandable, conforming to their level.”(Ö9)

Conditionals- “Suitable. I think that a different topic attracts attention. Compliance is
no problem, just a little complicated. Look at the picture to understand or trying to
comment on the topic, all these might get confusing so it is necessary to go step by step
regularly.”(Ö4)

Cycles- “It is a fun activity that attracts the attention of students and fit to their
level.”(Ö4)

“Devise a Plan”

Variables- “Suitable because they always do that kind of transactions in maths lesson.
Sixth graders will be able to easily comprehend and resolve.”(Ö3)

Conditionals- “I think it suits students' levels. Only while moving from one transfer
point to the other transfer point, I think it is necessary to emphasize those transfer points
a little more clearly or put forth them well on the picture while describing.”(Ö2)

Cycles- “Vehicle transits might distract children, apart from that, they can do it. I
contemplate how will they reach the fastest? I think children will choose it. Our sixth
grade students can do.”(Ö9)

“Compare the Strategies”

Variables- “15 mins is acceptable. For this item, it is not an item which will take too long
to discuss strategies proposed by children, they are able to express their own strategies
in a few minutes.“(Ö7)

Conditionals- “I think this duration, he’d talk if he were allowed two lessons’ time.
Because at that age they always are, but what is good here is that one can say what
another can not think, or another group if they work in groups.”(Ö4)

Cycles- “20 minutes is enough to examine the strategy for the third item and to examine
it after identifying the strategy 20 minutes. Sufficient time is allocated. Suitable.”(Ö10)

“Devise an Algorithm”

Table 7 reveals that 5 teachers found the step “Devise an Algorithm” good enough. The other 5
teachers stated that some of the drama games at that step are not practical for the size and physical
facilities of classes. Some of the teachers’ views regarding this step are given below:

Variables- “I do not think there will be much trouble in crowded classrooms because in
this kind of activities, the class can draw the attention onto that completely. If balance
is achieved without too much laxity, there will be no problem in practice in crowded
classrooms.”(Ö7)

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

169

Conditionals- “In practice this animation seems very difficult to me. The first is to create
physical space; the second seems to be difficult for children to make exchanges or the
idea of transfer with these different people.”(Ö3)

Cycles- “If it is a crowded class, creating an appropriate environment is a nuisance.
When it is crowded, the student at the back will not be able to follow the activity exactly.
There may be such problems.”(Ö4)

“Code the Algorithm”

In Table 7, while computerized activities for “Code the Algorithm” were considered acceptable
by 2 of the teachers, 8 members of the team thought they could be revised for higher compliance with
cognitive levels. Some of the teachers’ views in this regard are quoted below:

Variables- “Once they define the variables and understand which variable is what, they
can do the definition but they may not be able to sort out adding, multiplication and so
on with the variables.”(Ö1)

Conditionals- “The examples are good but it is controversial whether they are for
secondary school or upper level. The simpler, the better. It is good that the examples
are related to everyday life.”(Ö7)

Cycles- “This is quite like a year-end project. Generally speaking, it is difficult even to
do the rotating movement.”(Ö6)

Identify and Correct the Error in a Different Code

Table 7 reveals that computer-aided activities corresponding to “Identify and Correct the Error
in a Different Code” were approved by 8 teachers, while 2 teachers expressed opinions for updating.
Below are some of the teachers’ views:

Variables- “10 minutes might be short to learn and correct the error. A good activity to
find and correct the error in the algorithm but it may take a little longer to detect the
error. Correction can be fast, but time may get shorter until detecting the error.”(Ö7)

Conditionals- “A simple application that students can resolve. I think they can edit the
bad code structure. Suitable for student level.”(Ö6)

Cycles- “It can be done, pretty good. It's such a good thing because each one has got a
mistake; it will control both the cat and the dog and if it goes step by step, there will be
no trouble, and when it reads step by step, it will see the error already.”(Ö9)

The DET made comments predominantly on the fourth and fifth steps of the PSS model.
Although they found the model steps acceptable and essential, they mentioned updatings for the sake
of more efficient activities connected to these steps. Table 7 displays the considerations in preparing
lesson plans in accordance with the PSS model from the DET’s perspective.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

170

Table 7. Considerations in Lesson Plans

PSS Model Steps DET Recommendations

Understand the Problem
Before moving on to the main activity, you should start with a simpler
activity about the topic or a simpler part of the main activity

Devise a Plan -

Compare the Strategies

At this stage, the teacher must write on the board in order to help students
put their different strategies and steps in an algorithm. In this way, students
are given more time to develop their own strategies and compare with other
students' strategies while spending less time for writing.

Devise an Algorithm -

Code the Algorithm

Before the generated algorithm is coded in its entirety, it must be divided
into segments to progressively go from simple to complex.
Instructions that are not part of the lesson and that confuse students
(moving the character or changing a costume, etc.) should be made
available to the students. So, without distracting the students, they must
focus only on the topic of the lesson.

Identify and Correct an
Error in a Different Code

Students should be given as much time as possible to analyze the codes as
required by the transactions in this step.

Prepare and Code New
Algorithms

-

It was seen that the DET teachers regarded the steps of the PSS model in compliance with
preparation and implementation of lesson plans. The recommendations given in Table 7 target the
lesson plans to be prepared according to the PSS model. The recommendations particularly imply the
need to break the problem status in the activities into smaller pieces for progress from the simplest to
the most complicated and to allocate as much time as possible to students for their own learning.

Discussion and Conclusion

In this study, first, the steps that can be used in programming teaching were determined by the
DT through document analysis. After that, the lesson plans drafted for assessment of these steps were
reviewed by the DET and their opinions were collected. Based on the document analysis by the DT and
the views of the DET, the steps of the PSS model were established for improving algorithmic thinking,
problem solving, and programming skills of learners at secondary school level. The steps of the model
were prepared considering both individual and group work as required.

The steps of the model are:

1. Understand the problem
2. Devise a plan
3. Compare the strategies
4. Devise an algorithm
5. Code the algorithm
6. Identify and correct the error in a different code
7. Prepare and code new algorithms

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

171

Understand the Problem: This stage requires students to understand what is given in the problem
and what they want by determining their place in the solution process. Therefore, students need to
improve their abstraction and analogy skills. Abstraction means discarding of unnecessary and
insignificant information from the problem by the student. Analogy (Simulation) refers to matching of
an unknown concept with a concept known to students for teaching of the former. Abstraction must be
performed by students, while analogy by teachers. This phase is performed in a classroom without a
computer.

Devise a Plan: It is the stage of determining the steps necessary to solve the problem. At this
stage, students try to determine the appropriate way to solve the problem by thinking and trying
different strategies. It is carried out as a continuation of the previous step in the class environment and
without a computer.

Compare the Strategiess: Students compare the strategies they determined in the previous step
with the solutions and suitability of the strategies developed by their classmates. The strategy
comparison phase covers comparing different solution strategies to find out why the steps are used,
what role they play in the solution process, and how they relate to each other. Students should be able
to understand not only their own strategies, but also the strategies of other students. In this step, the
students understand the necessity of the steps taken for the solution, the relationship with the next steps
and the results. The order of strategy steps for this solution is settled. It is carried out as a continuation
of the previous step in the class environment and without a computer. Detailed information can be
accessed from Şahin (2018).

Devise an Algorithm: This stage consists of 2 sub-steps.

i. Writing the algorithm: Students are instructed to write step by step the solution strategy they
determined through comparison in the previous step. Students' use of their own statements for the
solution can help them understand the solution.

ii. Playing the algorithm (Drama): A problem in the analogous structure can be revived with
drama as it will be related to the daily life of the students. This may trigger inclusion of students with
different types of intelligence and increase students' motivation. Therefore, drama activity is
considered important for students to express themselves.

The abovementioned steps are carried out without computers in the classroom as continuation
of the previous stage. The following stages include computerized processes.

Code the Algorithm: At this stage, students need to encode the algorithm they create by using a
computer.

Coding is a task that is perceived difficult by students and requires high-level thinking skills
(Jenkins, 2002; Kinnunen & Malmi, 2008). It is a must to comprehend the relationship of each line of
code used in algrithm coding to the code in the previous and next line, and the task of that code within
the whole program. In other words, each line of code used should be evaluated in terms of the reason
for use and the result it will generate for the whole program (Bayman & Mayer, 1988).

Identify and Correct the Error in a Different Code: Understanding and correcting the problem in a
different encoding requires an upper level skill than coding our own algorithm. So it is necessary to
understand the way in which the person writing the code thinks. As a different activity, it is performed
at the computer.

Prepare and Code New Algorithms: At this stage, the students are asked to encode a problem status
which they will specify, with the minimum commands they need to write a program only. In this way,
it is aimed that the students will be able to learn about the previous processes by doing themselves and
being aware of their own progress. The minimum commands are set to prevent students from designing
too easy activities. At this stage, if the teacher considers appropriate for the students’ level, might ask
them to solve problems which are expressed in general terms without any predetermined
limitations. The teacher can assign the activity at this stage as an extracurricular activity.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

172

In the abovementioned steps, one of the most important things is to provide students with
problems compliant with analogies. It is also believed that if they devise their own strategies and both
note down and discuss their strategies in the classroom, it will improve students' ability to express
themselves. It can also trigger development of different cognitive processes. In this regards, the
relationship between the basic skills and PSS steps in this study is as shown in Figure 4.

1. Understand the problem
2. Devise a Plan
3. Compare the Strategies
4. Devise an Algorithm
5. Code the Algorithm
6. Identify and Correct an Error in a Different

Code
7. Prepare and Code New Algorithms

Figure 4. PSS Steps and Associated Cognitive Skills

As shown in Figure 4, the first four steps of the 7-step programming model cover the steps to
improve problem solving skills, while the other three steps are aimed at the development of
programming skills, which deals with all of the three crucial skills. The comparison of the PSS model
steps with the three cognitive skills is shown in Table 8.

Table 8. PSS Relation to Algorithmic Thinking, Problem Solving, and Programming Levels

PSS Method
Sub-dimensions of
algorithmic thinking
ability (Futschek, 2006)

Steps of Problem Solving
Ability(George Polya,
1957)

Programming
Levels

1. Understand the
problem

Ability to analyze the
given problem

1. Understand the problem

Ability to fully
comprehend and express
the problem (abstraction)

2. Devise a Plan
Generating basic strategies
appropriate for the given
problem

2. Devise a Plan

3. Carry out the Plan

3. Compare the Strategies
Ability to think of all
possible normal and
special cases of a problem

4. Look Back

4. Devise an Algorithm

Ability to create a correct
algorithm using the
strategies specific for a
problem

5. Code the Algorithm

Ability to increase
accuracy of an algorithm

Beginner

6. Identify and Correct
the Error in a Different
Code

Intermediate

7. Prepare and Code
New Algorithms

 Advanced

Problem Solving
Skill

Programming
Skill

Algorithmic
Thinking Skill

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

173

Table 8 shows that the first step of the PSS model, is associated with the lower level sub-
dimensions of algorithmic thinking skills as "Ability to analyze the given problem" and "Ability to fully
comprehend and express the problem (abstraction)". It is also in connection with Polya’s first step of
problem solving as “Understand the problem”. At those stages, the content of the problem is analysed,
the given and wanted data are asked, and unnecessary data are omitted in order to solve any given
problem, expressing the obtained data in this way.

The second step of our model corresponds to the sub-dimension of algorithmic thinking as
"Generating basic strategies appropriate for the given problem" and Polya's "Devise a Plan" and "Carry
out the Plan". These steps cover developing a stragety for solution of a problem and implementing the
strategy.

The third step of the model is correlative to algorithmic thinking in sub-dimension “Ability to
think of all possible normal and special cases of a problem” and Polya’s problem- solving step “Look
Back”. At the relevant steps, the strategies developed and results of application of the strategies are
discussed and evaluated. Decision is made for the best strategy to solve the problem.

The next step in the PSS model relates to algorithmic thinking in the sub-dimension “Ability to
create a correct algorithm using the strategies specific for a problem”. This step is typical for writing the
algorithm of the problem solution by following the most appropriate strategy.

The fifth and sixth steps in our model relate to the algorithmic thinking sub-skill “Ability to
increase accuracy of an algorithm”. At these steps, improvements can be made on the algorithm for a
more efficienct outcome through application. Step five in the PSS model addresses to beginner learners
of programming. Students at this level typically build their solutions on this structure by adhering to
the algorithm devised for solving the problem (Weiser & Shertz, 1983). Likewise, in the fifth step of the
SPP method, coding is performed in adherence to the algorithm created at step four.

The sixth step of our model appeals to programming students at intermediate level. In the
literature, the 5 operations performed during programming are listed as;

1- Identifying problem requirements, developing the solution in the most appropriate way for
the problem, and configuring the mental design of these operations

2- Being able to understand an algorithm or program previously written by others

3- Performing coding by using a computer for solution of the problem

4- Being able to find out the reason for a functional dysfunction of a program (Identifying errors)

5- Being able to make necessary amendments on a certain program in accordance with needs
(Refinement) (Shneiderman, 1976; Koubek, Salvendy, Dunsmore, & Lebold, 1989).

Of the common operations in the programming process, the first one refers to be able to produce
the most appropriate solution for a problem and the second is to understand a written program. In order
to be able to detect and correct errors in a written program, it is necessary to understand the program.
The third operation is coding for solving the problem. The fourth and fifth steps concern identifying the
errors on the program and making necessary updates.

Feddon and Charness (1999) investigated the relationship between individuals at different
levels of programming and operations performed in programming. They discovered a meaningful
relationship between intermediate level programmers and skills of identifying errors (operation four)
and editing (operation five) in their study. Bearing this in mind, the study argues that students should
be taught to identify and correct errors as one of the programming operations in order to improve
programming skills. Similarly, Masuck, Alves-Foss, and Oman (2008) stated that students who have the
ability to write programs but are not capable of correcting the errors in the program stay behind at a
critical stage of programming.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

174

The last step of the PSS model appeals to students at advanced programming level because
students at this level are able to prepare and code the algorithms they need for a problem status on a
computer. Weiser and Shertz (1983) noted that advanced programmers are able to write and then code
the algorithm which is needed to solve a problem.

In the lesson plans prepared in accordance with the PSS model, tasks expected from teachers
and students were specified and explicated with necessary directives. In addition, the forms and
examples that teachers can use were attached (Şahin, 2018). The activities in the lesson plan were
designed as a guide for teachers in a way allowing adjusting of the difficulty level. As a result, teachers
are free to update the activities according to students’ cognitive levels, duration, and physical
possibilities of their classroom. In this study, an overview of the lesson plans presented to the DET
teachers and their use are given in Annex-3.

In conclusion, this study gives an account of generation and steps of the model called
Programming in Seven Steps (PSS) and teachers’ views on the model as a tool for developing
algorithmic thinking, problem solving, and programming skills of students at schools. The model
suggested here is expected to yield positive results in in-class implementations.

Recommendations

• The lesson plans based on the PSS model should be applied to students from various success
levels to evaluate the effectiveness of the model.

• The lesson plans based on the PSS model should be applied at various grades of education to
evaluate the effectiveness of the model.

• The impact of the lesson plans based on the PSS model on algorithmic thinking, problem
solving, and programming skills of students should be investigated.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

175

References

Akpınar, Y., & Altun, A. (2014). Bilgi toplumu okullarında programlama eğitimi gereksinimi. İlköğretim
Online, 13(1), 1-4.

Ala-Mutka, K. (2004). Problems in learning and teaching programming. Retrieved form
https://www.cs.tut.fi/~edge/literature_study.pdf

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through
educational robotics: A study on age and gender relevant differences. Robotics and Autonomous
Systems, 75, 661-670.

Balanskat, A., & Engelhardt, K. (2015). Computing our future: Computer programming and coding - Priorities,
school curricula and initiatives across europe. Retrieved form
http://fcl.eun.org/documents/10180/14689/Computing+our+future_final.pdf/746e36b1-e1a6-4bf1-
8105-ea27c0d2bbe0

Bayman, P., & Mayer, R. E. (1988). Using conceptual models to teach BASIC computer programming.
Journal of Educational Psychology, 80(3), 291-298.

Bergersen, G. R., & Gustafsson, J. E. (2011). Programming skill, knowledge, and working memory
among professional software developers from an investment theory perspective. Journal of
Individual Differences, 32(4), 201-209.

Brown, Q., Mongan, W., Kusic, D., Garbarine, E., Fromm, E., & Fontecchio, A. (2013). Computer aided
instruction as a vehicle for problem solving: Scratch programming environment in the middle years
classroom. Retrieved form http://www.pages.drexel.edu/~dmk25/ASEE_08.pdf

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in programming. ACM SIGCSE
Bulletin, 33(3), 49-52.

Choi, J. Lee, Y., & Lee, E. (2016). Puzzle based algorithm learning for cultivating computational
thinking. Wireless Personal Communications, 93(1), 131-145. doi: 10.1007/s11277-016-3679-9

Clements, D., & Sarama, J. (2003). Strip mining for gold: research and policy in educational technology
a response to “fool’s gold”. AACE Journal, 11(1), 7-69. Retrieved form
https://www.learntechlib.org/index.cfm/files/paper_17793.pdf?fuseaction=Reader.DownloadFull
Text&paper_id=17793%C2%A0

Committee on Logic Education. (2008). Algorithmic thinking. Retrieved form
http://www.ucalgary.ca/aslcle/nctm/Q2A.html

Crescenzi, P., Malizia, A., Verri, M. C., Diaz, P., & Aedo, I. (2012). Integrating algorithm visualization
video into a first-year algorithm and data structure course. Educational Technology & Society, 15(2),
115-124.

Creswell, J. W. (2013). Steps in conducting a scholarly mixed methods study. DBER Speaker Series, 48.
Retrieved form http://digitalcommons.unl.edu/dberspeakers/48

Coull, N. J., & Duncan, I. M. (2011). Emergent requirements for supporting introductory programming.
Innovation in Teaching and Learning in Information and Computer Sciences, 10(1), 78-85.

Çıray, F., & Erişti, B. (2014). Disiplinlerarası analoji tabanlı öğretimin farklı düzeylerde akademik
başarılı ilköğretim öğrencilerinin fen ve teknoloji dersi öğrenme düzeyleri üzerindeki etkisi.
İlköğretim Online, 13(3), 1049-1064.

Fesakis, G., & Serafeim, K. (2009). Influence of the familiarization with scratch on future teachers’
opinions and attitudes about programming and ICT in education. ACM SIGCSE Bulletin, 41(3), 258-
262.

https://www.cs.tut.fi/%7Eedge/literature_study.pdf
http://fcl.eun.org/documents/10180/14689/Computing+our+future_final.pdf/746e36b1-e1a6-4bf1-8105-ea27c0d2bbe0
http://fcl.eun.org/documents/10180/14689/Computing+our+future_final.pdf/746e36b1-e1a6-4bf1-8105-ea27c0d2bbe0
http://www.pages.drexel.edu/%7Edmk25/ASEE_08.pdf
https://www.learntechlib.org/index.cfm/files/paper_17793.pdf?fuseaction=Reader.DownloadFullText&paper_id=17793%C2%A0
https://www.learntechlib.org/index.cfm/files/paper_17793.pdf?fuseaction=Reader.DownloadFullText&paper_id=17793%C2%A0
http://www.ucalgary.ca/aslcle/nctm/Q2A.html

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

176

Feddon, J. S., & Charness, N. (1999). Component relationships depend on skill in programming. 11th
Annual PPIG Workshop, University of Leeds, UK, 1-11. Retrieved form
https://pdfs.semanticscholar.org/dccf/2f3cd095192abd0b5c624c5dda7948f5826b.pdf

Futschek, G. (2006). Algorithmic thinking: the key for understanding computer science. In R. T.
Mittermeir (Ed.), Informatics Education – The Bridge between Using and Understanding Computers (V.
4226, pp. 159-168). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/11915355_15

Garner, S. (2003). Learning resources and tools to aid novices learn programming. In Informing science
& information technology education joint conference (INSITE) (pp. 213-222). Retrieved from
https://pdfs.semanticscholar.org/21a6/68fb94878b040e4bffba0858d15896cdbbd8.pdf

Ginat, D. (2004). On novice loop boundaries and range conceptions. Computer Science Education, 14(3),
165-181.

Grover, S., & Pea, R. D. (2013). Computational thinking in K-12: A review of the state of the field.
Educational Researcher, 42(1), 38-43.

Helminen, J., & Malmi, L. (2010). Jype - a program visualization and programming exercise tool for
Python. In Proceedings of the 5th international symposium on Software visualization - SOFTVIS ’10 (pp.
153). Salt Lake City, Utah, USA: ACM Press. https://doi.org/10.1145/1879211.1879234

ISTE. (2016). The ISTE National Educational Technology Standards (NETS) and Performance Indicators for
Students. Retrieved from http://www.iste.org/standards/nets-for-students

Jenkins, T. (2002, September). On the difficulty of learning to program. In Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences. Leeds.

Kam, H. J., & Katerattanakul, P. (2014). Structural model of team-based learning using Web 2.0
collaborative software. Computers & Education, 76, 1-12.

Karaman, S., Yıldırım, S., & Kaban, A. (2008). Öğrenme 2.0 yaygınlaşıyor: Web 2.0 uygulamalarının
eğitimde kullanımına ilişkin araştırmalar ve sonuçları. In XIII. Türkiye’de İnternet Konferansı
Bildirileri (pp. 35-40). Orta Doğu Teknik Üniversitesi, Ankara.

Kalelioglu, F., & Gülbahar, Y. (2014). The effects of teaching programming via Scratch on problem
solving skills: a discussion from learners' perspective. Informatics in Education, 13(1), 33-50

Kafai, Y. B., & Q. Burke. (2014). Connected code: Why children need to learn programming. MIT Press.

Kinnunen, P., & Malmi, L. (2008, September). CS minors in a CS1 course. Paper presented at the Fourth
international Workshop on Computing Education Research, Sydney.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school girls to learn
computer programming. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM, 1455-1464.

Klopfer, E., & Yoon, S. (2005). Developing games and simulations for today and tomorrow’s tech savvy
youth. TechTrends, 49(3), 33-41.

Kobsiripat, W. (2015). Eff ects of the media to promote the scratch programming capabilities creativity
of elementary school students. Procedia-Social and Behavioral Sciences, 174, 227- 232.

Koubek, R. J., Salvendy, G., Dunsmore, H. E., & LeBold, W. K. (1989). Cognitive issues in the process of
software development: review and reappraisal. International Journal of Man--Machine Studies, 30,
171-191.

https://pdfs.semanticscholar.org/dccf/2f3cd095192abd0b5c624c5dda7948f5826b.pdf
https://pdfs.semanticscholar.org/21a6/68fb94878b040e4bffba0858d15896cdbbd8.pdf
http://www.iste.org/standards/nets-for-students

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

177

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1989). A study of the development of
programming ability and thinking skills in high school students. Journal of Educational Computing
Research, 2(4), 429-458.

Kukul, V., & Gökçearslan, Ş. (2014). Scratch ile programlama eğitimi alan öğrencilerin problem çözme
becerilerinin incelenmesi. 8. Uluslararası Bilgisayar ve Öğretim Teknolojileri Sempozyumu’nda
sunulan bildiri, Trakya Üniversitesi Bilgisayar Öğretmenliği Bölümü, Edirne.

Law, K. M., Lee, V. C., & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer
programming courses. Computers & Education, 55(1), 218-228.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H. (2005) A Study of Difficulties of Novice Programmers. In
Acm Sigcse Bulletin, ACM, 37(3), 14-18.

Lai, A. F., & Yang, S. M. (2011). The learning effect of visualized programming learning on 6th graders’
problem solving and logical reasoning abilities. In 2011 International Conference on Electrical and
Control Engineering (pp. 6940-6944). Yichang, China: IEEE.
https://doi.org/10.1109/ICECENG.2011.6056908

Lai, C. S., & Lai, M. H. (2012). Using computer programming to enhance science learning for 5th graders
in taipei. In 2012 International Symposium on Computer, Consumer and Control (pp. 146-148).
Taichung, Taiwan: IEEE. https://doi.org/10.1109/IS3C.2012.45

Lee, Y. J. (2011). Empowering teachers to create educational software: A constructivist approach
utilizing Etoys, pair programming and cognitive apprenticeship. Computers & Education, 56(2), 527-
538.

Linn, M. C., & Dalbey, J. (1989). Cognitive consequences of programming instruction. In E. Soloway &
J.C. Spohrer (Eds.), Studying the novice programmer (pp. 57-81). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE Bulletin,
39(1), 223-227.

Masuck, C., Alves-Foss, J., & Oman, P. (2008). Analysis of fault models for student use. ACM SIGCSE
Bulletin, 40(2), 79-83.

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation. John Wiley
& Sons.

Milli Eğitim Bakanlığı. (2017). Bilişim teknolojileri ve yazılım dergisi öğretim programı, 2016-2017. Ankara:
Milli Eğitim Basımevi.

Naharro-Berrocal, F., Pareja-Flores, C., Urquiza-Fuentes, J., & Velázquez-Iturbide, J. á. (2002).
Approaches to comprehension-preserving graphical reduction of program visualizations. In
Proceedings of the 2002 ACM symposium on Applied computing-SAC ’02 (pp. 771). Madrid, Spain: ACM
Press. https://doi.org/10.1145/508791.508941

Oluk, A., & Saltan, F. (2015). Effects of using the scratch program in 6th grade information technologies
courses on algorithm development and problem solving skills [Special issue]. Participatory
Educational Research, 10-20.

Özmen, B., & Altun, A. (2014). “Undergraduate students' experiences in programming: difficulties and
obstacles.” Turkish Online Journal of Qualitative Inquiry, 5(3), 1-27.

Porter, R., & Calder, P. (2004). Patterns in learning to program: an experiment?. In Proceedings of the Sixth
Australasian Conference on Computing Education - Volume 30 (pp. 241–246). Darlinghurst, Australia,
Australia: Australian Computer Society, Inc.

Polya, G. (1957). How to solve It? (2nd ed.). Princeton, N.J.: Princeton University Press.

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

178

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and
discussion. Computer Science Education, 13(2), 137-172.

Sanford, J. F., & Naidu, J. T. (2016). Computational thinking concepts for grade school. Contemporary
Issues in Education Research (Online), 9(1), 23.

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). “Visual programming languages
integrated across the curriculum in elementary school: A two year case study using “scratch” in
five schools.”, Computer & Education, 97, 129-141.

Scaffidi, C., & Chambers, C. (2012). Skill progression demonstrated by users in the Scratch animation
environment. International Journal of Human-Computer Interaction, 28(6), 383-398.

Schwartz, J., Stagner, J., & Morrison, W. (2006). Kid’s programming language (Kpl). In ACM SIGGRAPH
2006 Educators program on-SIGGRAPH ’06 (pp. 52). Boston, Massachusetts: ACM Press.
https://doi.org/10.1145/1179295.1179348.

Seppälä, O., Malmi, L., & Korhonen, A. (2006). Observations on student misconceptions—A case study
of the Build-Heap Algorithm. Computer Science Education, 16(3), 241-255.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior. International Journal of
Computer and Information Sciences, 5, 123-143.

Shih, I. J. (2014). The effect of scratch programming on the seventh graders’ mathematics abilities and problem
solving attitudes (Yayımlanmamış yüksek lisans tezi). Taipei University, Taiwan.

Silverman, D. (2013). Doing qualitative research: A practical handbook. London: SAGE Publications.

Spohrer, J. C., & Soloway, E. (1989). Simulating student programmers. In Proceedings of the 11th
International Joint Conference on Artificial Intelligence - Volume 1 (pp. 543-549). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Stolee, K. T., & Fristoe, T. (2011). Expressing computer science concepts through Kodu game lab. In
Proceedings of the 42nd ACM technical symposium on Computer science education - SIGCSE ’11 (pp. 99).
Dallas, TX, USA: ACM Press. https://doi.org/10.1145/1953163.1953197

Şahin, G. (2018). Ortaokul seviyesinde programlama öğretimi için bir yöntem önerisi (Yayımlanmamış yüksek
lisans tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.

Trilling, B., & Fadel, C. (2012). 21st century skills: learning for life in our times (1st ed.). San Francisco, Calif:
Jossey-Bass.

Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (2010). Alice, greenfoot, and scratch-a
discussion. ACM Transactions on Computing Education, 10(4), 1-11.

Vasconcelos, J. (2007). Basic Strategy for Algorithmic Problem Solving. Retrieved from
http://www.cs.jhu.edu/~jorgev/cs106/ProblemSolving.htm

Van Gorp, M. J., & Grissom, S. (2001). An empirical evaluation of using constructive classroom activities
to teach introductory programming. Computer Science Education, 11(3), 247-260.

Weiser, M., & Shertz, J. (1983). Programming problem representation in novice and expert
programmers. International Journal of Man-Machine Studies, 19(4), 391-398.

Winslow, L. E. (1996). Programming pedagogy-a psychological overview. ACM Sigcse Bulletin, 28(3), 17-
22.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair programming in the
introductory computer science course. Computer Science Education, 12(3), 197-212.

http://www.cs.jhu.edu/%7Ejorgev/cs106/ProblemSolving.htm

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

179

Wilson, A., & Moffat, D.C. (2010). Evaluating Scratch to introduce younger school children to programming.
Retrieved from http://scratched.gse.harvard.edu/sites/default/files/wilson-moffat-ppig2010-
final.pdf

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wu, W. Y., Chang, C. K., & He, Y. Y. (2010). Using Scratch as game-based learning tool to reduce learning
anxiety in programming course. Global Learn sunulan sözlü bildiri, Association for the
Advancement of Computing in Education (AACE).

Yuretich, R. F., Khan, S. A., Leckie, R. M., & Clement, J. J. (2001). Active-learning methods to improve
student performance and scientific interest in a large introductory oceanography course. Journal of
Geoscience Education, 49(2), 111-119.

Yükseltürk, E, Altıok, S., & Üçgül, M. (2016). Oyun programlamanın ilköğretim öğrencilerinin problem çözme
becerilerine etkileri: Bir yaz kampı deneyimleri. 4. Uluslararası Öğretim Teknolojileri ve Öğretmen
Eğitimi Sempozyumu’nda sunulan sözlü bildiri, Fırat Üniversitesi Bilgisayar ve Öğretim
Teknolojileri Bölümü, Elazığ.

Yıldırım, A., & Şimşek, H. (2011). Sosyal bilimlerde nitel araştırma yöntemleri. İstanbul: Seçkin Yayınları.

Yin, R. K. (2017). Case study research and applications: Design and methods. Los Angeles: SAGE.

Zsakó, L., & Szlávi, P. (2012). ICT competences: algorithmic thinking. Acta Didactica Napocensia, 5(2), 49-
58.

Ziatdinov, R., & Musa, S. (2012). Rapid mental computation system as a tool for algorithmic thinking of
elementary school students development. European researcher, Series A, (7), 1105-1110.

http://scratched.gse.harvard.edu/sites/default/files/wilson-moffat-ppig2010-final.pdf
http://scratched.gse.harvard.edu/sites/default/files/wilson-moffat-ppig2010-final.pdf

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

180

Appendix 1. Lesson Plan Evaluation Criteria Form

Appendix 2. Interview Questions Used by the IT and Software Teachers

1. How compliant is the activity in the lesson plan for teaching of programming to secondary 6th
graders with the students’ levels?

2. How compliant are the computer applications in the lesson plan for teaching of programming to
secondary 6th graders with the students’ levels?

3. Is the duration allocated for the activities in the lesson plan for teaching of programming to
secondary 6th graders sufficient? Why?

4. Is the duration allocated for the computer applications in the lesson plan for teaching of
programming to secondary 6th graders sufficient? Why?

5. How feasible are the activities in the lesson plan for teaching of programming to secondary 6th
graders in overcrowded classrooms?

6. How feasible are the computer applications in the lesson plan for teaching of programming to
secondary 6th graders in overcrowded classrooms?

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

181

Appendix 3. An Overview of Lesson Plans and Use of the Schedule

Table 9 summarizes the lesson plans in dimensions of topics, attainments and activities and provides overall information about implementation of the
lesson plants in accordance with the 7 steps.

Table 9. Summary Table for Lesson Plans

Topic Attainment Activity Step Type
Individual or
Group

Duration Week

Algorithm
Concept

• Explains the basic concepts of problem solving process.
• Expresses the importance of correct identification and ordering of

the solution stages of a problem.
• Proposes ways of solution for everyday problems.
• Designs different algorithms to solve the given problem.
• Analyzes the algorithm and predicts the results.
• Eliminates the troubles in the algorithm.
• Adjusts the algorithm for increased efficiency.
• Develops ideas with peers during the problem analyzing and

solving stages.

Helping the
Shepherd

1-7
Non-
computer

Individual or
Group

40 mins

1

Weaver Birds 1-7
Non-
computer

Individual or
Group

40 mins

Let's
Recognize the
Programming
Environment

• Adds a character to the screen.
• Changes the screen background.
• Gives movement to the character.
• Gives movement by changing character costume.

Leisure Time 1-7
Computer-
aided

Individual 160 mins 2-3

Variables

• Determines the constants and variables in the given problem.
• Uses the constants and variables to solve the given problem.
• Describes types of data.
• Explains the difference between data types.
• Uses data types to solve the given problem.

“Buying fruit at
greengrocer”

1
Non-
computer

Individual or
Group

5 mins

4-5 “I choose fruit” 2-4
Non-
computer Group 35 mins

“My fruit basket” 5-7
Non-
computer Individual 120 mins

Conditionals • Explains the decision logic structure.
• Explains the multiple if structure.

“Map” Activity 1
Non-
computer

Individual or
Group

10 mins 6-7

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

182

• Explains and exemplifies plain logic.
• Explains and exemplifies positive logic.
• Explains and exemplifies negative logic.
• Converts logical structures to each other.
• Forms decision tables.
• Designs algorithms using decision making in problem solving

processes.
• Creates flowchart using decision making in problem solving

process.

“Colourful Steps” 2-4
Non-
computer

Group 30 mins

“Maze map
game” 5-7

Computer-
aided Individual 120 mins

Cycles

• Explains the cycle logic structure.
• Explains the function of the increment values in the cycle logic

structure.
• Explains the conditions in the cycle logic structure.
• Designs algorithms suitable for cycle logic structure.
• Designs algorithms using cycle structures in problem solving

process.

“Ali playing a
game”

1
Non-
computer

Individual or
Group

5 mins

8-9

“Auto racing” in-
class animation

2-4
Non-
computer

Group 35 mins

“My fuel
amount”

5-6
Computer-
aided

Individual 115 mins

“Auto racing”
app

7
Computer-
aided

Individual 5 mins

Education and Science 2019, Vol 44, No 197, 155-183 K. A. Erümit et al.

183

Appendix 4. Regarding cycles, the PAT and SOT forms are as follows.

• Form for Understand the Problem

Questions Answers

1. What types of tracks are in the game?

2. What are the colors of vehicles in the game?

3. How many rounds does the game have?

4. What is the purpose of the game?

• Form for Devising a Plan

Road Color of the
vehicle

Time en route Exchange of
vehicle

Duration of vehicle
exchanging

Earth
Asphalt
Sand
Pebble

One-way duration: Exchanging
duration:

Round-way duration: Total duration:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

